
System Support for Nonintrusive Failure Detection and Recovery Using
Backdoors ∗

Florin Sultan†, Aniruddha Bohra†, Pascal Gallard∓, Iulian Neamtiu‡,
Stephen Smaldone†, Yufei Pan†, and Liviu Iftode†

† Department of Computer Science
Rutgers University,

Piscataway, NJ 08854-8019

{sultan, bohra, smaldone, yufeipan,

iftode}@cs.rutgers.edu

∓ IRISA / INRIA Rennes
Campus Universitaire de Beaulieu,

35042 RENNES Cedex - France

Pascal.Gallard@irisa.fr

‡ Department of Computer Science
University of Maryland,
College Park, MD 20742

neamtiu@cs.umd.edu

Abstract

Operating system hangs, crashes, deadlocks or panics are system
failures from which the only option for recovery is a reboot. A re-
boot regains control over the machine but discards all live appli-
cation and OS state still present in system memory, while this state
might be critical to users or clients of the system. Heavy-weight
approaches to preserve such state across failures, e.g., process/VM
checkpointing, hot backups, etc., are intrusive to failure-free exe-
cution and/or require dedicated machines.

In this paper, we describe Backdoors (BD), a novel system archi-
tecture that enables applications to survive software failures that
render the system unavailable (system hangs, OS crashes, etc.)
using a light-weight state extraction mechanism. The architecture
builds on two components: (i) a programmable NIC that enables
access to the memory of a machine even when its processor is un-
available due to severe OS failures, and (ii) OS extensions that
enable remote access to light-weight application and OS state.

We have implemented a Backdoors prototype by modifying the
FreeBSD kernel and using Myrinet NICs for remote access. We
describe a case study in using Backdoors in cluster-based Inter-
net services in which nodes mutually monitor their liveness and
recover client sessions from failed nodes.

1 Introduction

System recoverability and survivability in face of software
failures without compromising performance have become
more and more the focus of systems research [28]. Oper-
ating system failures are particularly harmful because they
render a whole computer system unusable. An OS crash
directly affects the application programs, which depend on
core OS services (memory allocation, process management,
I/O control, etc.).

This paper addresses the problem of system failures caused
by an OS hang, crash, deadlock, panic, etc. Such failures
require a reboot of the OS, a destructive action that causes
all the live state of the machine (still in the system memory)
to be lost. A reboot has unwanted side-effects like loss of

∗This work is supported in part by the National Science Foundation
under NSF CCR-0133366 and ANI-0121416.

data, disruption of service, inconsistencies in file systems,
etc. Existing general-purpose operating systems lack mech-
anisms for salvaging and reusing this state, except for rudi-
mentary crash dumps that can only be used for post-mortem
analysis of the crash.

Our goal is to develop a system architecture that can reli-
ably detect such failures and can enable critical state of the
system (that would otherwise be lost) to survive them. In
developing our system, we are looking for a solution that
is light-weight, relies only on commodity components, and
does not require re-design of the OS.

Past research in improving system reliability has focused
on bug/fault isolation in extensible OSs [31, 33]. More re-
cently, [39] has used isolation in a commodity OS kernel
through lightweight kernel protection domains, to make it
survive memory protection faults in extension code (device
drivers). Previous work in the area of OS reliability includes
full-fledged fault-tolerant operating systems [5] or making
certain OS subsystems recoverable across crashes [4, 11].

Full replication of system state on a dedicated machine us-
ing virtual machine monitors (VMM) to survive failures has
been developed in [7]. Solutions like process checkpointing
or snapshotting the state of an OS running inside a VMM
have been developed for migration of computing environ-
ments between two healthy systems [26, 30]. While these
approaches can preserve and restore computation state of a
system on another machine, they are heavy-weight and rely
on the original OS/VM being available.

In this paper, we describe Backdoors (BD), a novel system
architecture that enables applications to survive software
failures that render the system unavailable (system hangs,
OS crashes, etc.) using a light-weight state extraction mech-
anism. The architecture relies on two components: (i) a
programmable NIC that enables access to the memory of
a machine even when its processor is unavailable due to
severe OS failures, and (ii) OS extensions that enable re-
mote access to light-weight application and OS state. Using
Backdoors, a remote system can perform accurate monitor-
ing without CPU overhead on the target system and, upon
detecting a failure, can extract light-weight state from the

1

failed system and reinstate it on a healthy system. Our cur-
rent system relies on the availability of memory contents af-
ter an OS failure. Power failures or failures that may cause
extensive corruption to system memory are not covered.

We present the design of two OS extensions used in Back-
doors for monitoring the liveness of a system, detecting fail-
ures, and recovering critical functionality. The first exten-
sion is the Sensor Box (SB), a structured collection of me-
ter variables (sensors) that track the state of OS subsystems
in terms of health, liveness, performance, etc. The second
mechanism is a light-weight Continuation Box (CB) that
maintains fine-grained OS and application-specific state as-
sociated with a running application. The key idea behind
the CB abstraction is that only essential state needs to be
extracted and reinstated in a healthy OS/application running
on another system, while the rest of the state is either redun-
dant or can be easily re-created.

We have built a BD prototype using Myrinet NICs and ex-
tending the FreeBSD kernel with SB and CB implemen-
tations. We describe the design and implementation of a
CB that can salvage client sessions from failed nodes in a
cluster-based Internet server. Our system does not require
changes or intervention of client OS or applications for re-
covery, while requiring minimal changes to server applica-
tions.

We demonstrate the viability of our approach with a case
study in making client sessions of a complex multi-tier In-
ternet service similar to eBay [9] survive multiple server
node failures. We perform an extensive evaluation which
shows that Backdoors does not have any impact on client-
perceived performance during failure-free execution. In our
experiments monitoring a system with BD has low over-
head (under 1% CPU utilization), and recovery of a client
session takes under 25 ms in the worst case (for the last ses-
sion extracted from a system under load and for failures in
both front and mid-tier nodes), with no impact on client-
perceived performance and service correctness.

In summary, this paper has three main contributions:

(i) It proposes a novel system architecture based on remote
memory communication to enable nonintrusive failure de-
tection and recovery of system state even when the system
is dead (hung).

(ii) It uses commodity hardware (a programmable NIC that
can be inserted in any PCI-bus based system) and extends a
general-purpose OS to achieve the proposed functionality.

(iii) It demonstrates the viability of using Backdoors with a
realistic, multi-tier, transactional Internet service to achieve
tolerance to multiple node failures.

The remainder of the paper is structured as follows. Sec-
tion 2 gives background and reviews related work. Section
3 presents our approach. Section 4 describes the BD idea.
Sections 5 and 6 present the SB and CB abstractions. Sec-
tion 7 discusses limitations of our system and possible ex-
tensions. Section 8 describes our BD prototype. Section 9

presents a case study. Section 10 presents an experimental
evaluation of the prototype. Section 11 concludes the paper.

2 Background and Related Work

2.1 System Support for Failure Detection

A BD architecture can be used to perform monitoring of
a computer system from another system to detect failures,
without using the processors or relying on the OS resources
of the monitored system.

Failure detection and fault isolation inside an OS have been
studied in extensible operating systems [31, 33] with the
goal of recovering from bugs in extension code. Self-
monitoring has been used to adapt OS behavior for in-
creased performance [32] or to alleviate effects of DoS at-
tacks on system/application [29]. Despite obvious advan-
tages like instant access to entire system state, its reliance
on resources of the same system makes self-monitoring use-
less in detecting and reacting to system-wide failures that
make it impossible to report the fault to an external observer.
The widely-used alternative is to assess liveness of a system
through external monitoring from another machine, using
ping/heartbeat messages sent over a network.

In external monitoring, the monitoring traffic (e.g., periodic
ping/reply packets) is usually carried “in-band,” over the
same physical network and through the same (TCP/IP) pro-
tocol stack used for regular data transfers. This has several
drawbacks: (i) it generates false positives, i.e., it declares
the target system dead when it is actually not, e.g., if the
system is overloaded or under DoS attack; (ii) it can offer
no immediate information on what happened in case of a
crash or deadlock of the OS; (iii) it generates overhead on
the target system, increasing with the ping frequency and/or
the volume of data collected from the system.

In contrast, a BD architecture (i) can perform external mon-
itoring of a target system without relying on its protocol
stack or OS, thereby eliminating false positives specific to
TCP/IP heart-beating techniques, (ii) does not incur any
CPU overhead on the target machine for monitoring, (iii)
enables a remote system to perform automated post-mortem
inspection of a crashed system.

Recently, [14] has proposed the timed-perfect failure detec-
tor, a distributed protocol that eliminates false positives in
detection of computer crash failures. The protocol relies on
custom hardware watchdogs to force-crash a system before
it is (wrongly) suspected to have failed by a higher-level un-
reliable failure detection protocol. A timed-perfect detector
is fairly expensive to implement, requiring three indepen-
dent machines to detect failure of a participant.

A large body of theoretical work exists in the area of ef-
ficient failure detectors in distributed systems [10, 17, 15].
In using BD for external monitoring we build on theoret-
ical results on the guaranteed accuracy of unreliable fail-
ure detectors under specified deadline constraints for detec-
tion [17]. A BD provides a trade-off between practical and

2

highly accurate failure detection, through provably negligi-
ble probability of false positives and reliable enforcement
of a fail-stop model, without requiring complex detection
protocols.

2.2 System Support for OS Reliability

A BD architecture can be used to extract light-weight OS
and application state from the memory of a dead system
(after an OS hang, crash, deadlock, etc.) and recover it on
another healthy system.

Traditional fault-tolerant systems like Tandem [5] rely on
hardware and/or software redundancy to mask component
failures. The high cost of hardware and maintenance prac-
tically prohibits cost-effective use of such machines. BD
does not provide component or OS fault tolerance, but of-
fers a cost-effective and light-weight solution using off-
the-shelf components for recovery of critical state from a
general-purpose OS after a failure.

Nonvolatile memory has been used to preserve select sys-
tem/application state across crashes and reboots [4, 11].
The Recovery Box [4] is an OS-controlled NVRAM region
used to store system state and retrieve it after crash/reboot.
The Rio reliable file cache [11] preserves file system data in
NVRAM, protects it during a crash and uses it for warm re-
boot. In contrast, [4, 11], BD provides a generic architecture
for failure detection and light-weight state recovery. It does
not require stable memory devices, but assumes that mem-
ory contents is still available and uses off-the-shelf hard-
ware to access it.

VMMs have been used to intercept and back up the entire
state of a system for tolerating failures, at the expense of
dedicating full machines [7]. OS designs like [35] provide
support for hot-swapping whole OS subsystems. While at-
tractive for its ability to preserve live OS state across a swap,
hot-swapping requires structural OS changes and is ineffec-
tive on a dead system with no cycles available to execute
even the hot-swapping code.

Nooks [39] is a software system that uses code interposi-
tion and virtual memory techniques to sandbox faulty ker-
nel loadable modules. Because Nooks focuses on memory
protection, it can only detect faults if they occur in exten-
sions and involve faulty memory accesses. BD is orthogo-
nal to Nooks, by detecting and recovering system state from
system-hang failures, regardless of their place of occurrence
in system code. Unlike Nooks, BD can handle failures trig-
gered by other factors than system software (operator errors,
hardware faults).

To our best knowledge, Backdoors is the first system that
leverages memory-to-memory communication and intelli-
gent NICs to perform automated nonintrusive remote mon-
itoring and intervention on a failed system for extraction
of useful state or in-place repair. Previous work done in
the 1980’s on DEC’s Titan system [25] has used custom
hardware (memory controllers equipped with Ethernet in-
terfaces) to perform remote read/write memory operations

for remote debugging and software/data patching without
rebooting the kernel [23].

In [6], we showed how BD can be used to repair the dam-
aged state of a live OS by remote intervention on OS data
structures. In this paper, we show how Backdoors can be
used to recover critical state from a failed system in cases
where BD-based repair does not work, e.g., system hang or
crash failures.

2.3 System Support for Reliable Internet Ser-
vices

The case study we describe in this paper focuses on provid-
ing uninterrupted and correct service to clients of an Inter-
net service. Specifically, we tackle the difficult problem of
making live client sessions transparently survive failures of
server nodes in complex Internet services with transactional
execute-once semantics, where components of the service
are distributed on multiple machines (multi-tiered architec-
tures).

What makes the problem difficult is the highly dynamic
state in such systems (involving one or more server pro-
cesses communicating over TCP/IP and IPC channels), the
interactive clients (humans) that do not tolerate disrup-
tion, performance degradation, or loss of transactions with
a critical service, and the strict requirement of exactly-
once semantics of critical services (e-commerce, bank-
ing, auction systems, etc.). Previous recovery solutions,
e.g., [42, 34, 1, 41, 20, 22, 42] are either not directly ap-
plicable to complex Internet services or have serious limita-
tions in scope. Their common drawback is the intrusiveness
during the failure-free execution of the system for which
they provide recovery support.

TCP wrapping [1] masks the failure and restart of a server
with open connections. However, its use of heavy-weight
single-process checkpointing for recovery makes it imprac-
tical for Internet services. Fine-grained failover using con-
nection migration was used in [34] in a cluster-based HTTP
server. The scheme is limited to static HTTP transfers from
single-process servers, requires the transport layer to be
aware of HTTP, and relies on massive broadcasts of recov-
ery state inside the cluster. Primary-backup schemes have
been used to build fault-tolerant TCP servers by mirroring
their communication and computation state on another ma-
chine through active remote logging [41] or passive traffic
tapping at the link-layer [22, 20]. These schemes require
fully-dedicated nodes as backups and use interposition tech-
niques that affect the performance of failure-free execution.
In addition, they do not tolerate loss of the backup unless
some form of stable logging is used [41]. None of these
schemes has been shown to be applicable to complex, multi-
tier, transaction-oriented Internet services.

In contrast to the above approaches, we demonstrate that a
BD-based system can provide both accurate failure detec-
tion and fast recovery, it is light-weight and nonintrusive, it
is application independent, and can be used with complex

3

cluster-based Internet services.

3 Approach

This paper proposes a recovery model and a recovery mech-
anism that enables survival of critical software state of a
computer system across failures, with low/negligible over-
head during failure-free execution and fast recovery. By
“critical software state” we mean light-weight state com-
ponents residing in system memory that are needed for per-
forming a certain task, for example: data in TCP buffers
of live connections in a network server, data in dirty
buffer cache blocks not synced to a network file server,
application-specific data describing the point an application
has reached in its computation, etc.

In this paper, failure denotes the impossibility of a com-
puter to execute any code (hang failure), or to make progress
in a certain OS subsystem or application. A failure may
have multiple and complex causes: (i) a faulty software
component in the OS that leads to a system-wide freeze,
e.g., a driver bug causing permanent loss of interrupts from
a device, system hanging due to a deadlock error, a mis-
placed panic only reached under certain stress conditions,
etc.; (ii) a wrong operator command or a misconfiguration
that causes the OS to halt or crash, generate errors, or slow
down under prescribed levels while under reasonable load;
(iii) a peripheral device that ceases to respond and prevents
a certain OS subsystem from executing normally or making
progress in service (e.g., a faulty disk, a disconnected Eth-
ernet cable, a faulty NIC that stops generating interrupts,
etc). In such cases, we assume that the rest of the system is
not impaired, e.g., a faulty component does not lock up the
system bus.

The failure model is fail-stop: a failed system does not be-
have erratically (the failure is non-Byzantine). For failure
detection purposes, each system has its own private clock.
Clocks may not be synchronized, but their drift rates (from
an arbitrary clock) must remain constant.

Monitoring. The monitoring component of the system is
responsible for failure detection. It assumes the existence
of at least one other monitor system (denoted by M) that
performs external monitoring of a target system (denoted
by T), detects its failure, and initiates recovery actions.

The monitor is not a dedicated machine, and the monitor-
target functionality is symmetric, i.e., a target can be a mon-
itor of another system (including its own monitor), For ex-
ample, machines in a cluster of servers may mutually mon-
itor each other. We use “monitor” and “target” only to dis-
tinguish the roles of two systems in a given peer-to-peer
interaction.

An M runs a failure detection algorithm implemented by
a monitor process using remote observation of T ’s health-
iness (Figure 1, (a)). This involves periodic inspection of
state dynamics in T ’s memory, e.g., examining OS statistics
in T ’s kernel vmmeter structure. When it suspects a failure,
and before taking recovery actions, M enforces the fail-stop

Figure 1: An example of monitoring and recovery with
Backdoors. (a) A monitor process on M inspects health in-
dicators in T’s OS memory. (b) On detecting a failure, M
extracts light-weight critical application-level and OS state
and reinstates it locally.

model by performing a remote OS locking operation that
halts any OS activity on T .

Recovery. Upon detecting a failure, M recovers the lost
functionality of T . The recovery action consists in extract-
ing critical OS and application state from T ’s memory after
the failure and injecting it into M’s memory (Figure 1, (b)).
For example, if T is an Internet server, M must re-incarnate
the server-side of a TCP client connection and synchronize
the two endpoints. The fail-over requires that M has access
to the same resources as T , e.g., if T was using an external
file/database server M must also have access to it.

This recovery model assumes that T ’s memory is available
after a failure, and that T ’s OS does not destroy or corrupt
critical state in response to a failure, i.e., T just hangs. Sec-
tion 7 provides a detailed discussion on the general validity
of this assumption and on existing mechanisms that enforce
it.

To perform nonintrusive monitoring and recover from a fail-
ure that makes T unavailable, we need a uniform mecha-
nism that enables (i) access to the state of the system with-
out overhead during execution, (ii) access to T even when it
is dead.

We describe a mechanism for recovery of critical state from
a failure that combines:

• a system architecture that enables nonintrusive access
to in-memory software state of a system;

• OS extensions for monitoring system liveness and for
recovery of live light-weight state after a failure.

4

4 The Backdoors Architecture

Backdoors (BD) [38] is a novel system architecture for re-
mote healing of computer systems. The central idea in BD
is to combine hardware and software mechanisms to en-
able highly accurate monitoring and effective healing ac-
tions even in the presence of failures that make a system
unavailable. In Backdoors, a computer is equipped with a
“backdoor” - a programmable NIC placed on the system
I/O bus and which is not controlled by the OS except for
its initialization. The main function of a Backdoor NIC is
to provide a path for access to resources of its host com-
puter (memory, I/O devices, etc.), without using its proces-
sors and relying on its OS. This powerful capability makes
Backdoors (i) nonintrusive to the system activity during its
normal operation, and (ii) robust to OS failures that make
the rest of the system unusable.

Backdoor NICs are connected through a low-latency inter-
connect and run a specialized firmware that does not involve
processors of a remote host when performing a communica-
tion operation with it. Figure 2 shows the basic remote heal-
ing configuration with BD, where the system on the left acts
as the monitor (M) for the target system (T) on the right. In
such a M-T communicating pair: (i) M’s CPU can initiate
an operation in the T ’s NIC; (ii) T ’s NIC performs access
operations to local resources (memory, I/O devices), with-
out using T ’s CPU.

To support remote healing, a Backdoor NIC must imple-
ment read, write and atomic access operations (local and
remote). The remote read/write functionality is similar to
that of remote DMA (RDMA), a communication primitive
that allows a machine to access the memory of another ma-
chine for reading and writing while bypassing its proces-
sor(s). RDMA primitives are included in industrial stan-
dards [12, 19] and are implemented by specialized con-
trollers like [21].

Figure 2 shows an example of a remote read operation that
involves the following steps: (1) The CPU on M initiates
a protocol between the local and remote NICs for transfer
(read) of a remote buffer from T ’s memory; (2) M’s NIC
requests the data from T ’s NIC; (3-4) T ’s NIC performs
a DMA operation to retrieve the data and send it to M’s
NIC; (5) M’s NIC performs a DMA to place the data in lo-
cal memory. Note that neither of the two CPUs are involved
in the actual data transfer, while only M’s CPU is involved
in initiating the transfer. To enable remote memory access,
T ’s OS performs a one-time initialization which registers
with the NIC non-pageable regions of system (kernel) mem-
ory. Registration enables access control and remote mem-
ory addressing using virtual addresses by loading virtual-to-
physical address mappings into the NIC.

Backdoors takes a completely novel approach in using pro-
grammable NICs and remote memory communication to
support remote nonintrusive monitoring and healing oper-
ations (recovery/repair) on an impaired system. To support
complex remote healing operations under BD, an OS must

Figure 2: A monitor-target pair in the Backdoor remote
healing architecture. A monitor can access resources of the
target system (memory, I/O devices) through the backdoor
I-NICs, without using its CPU.

be extended with interfaces for remote access to OS and
application state. Extensions enable access by remote BD
NICs to regions of OS/application memory that hold criti-
cal state or to I/O devices of the target system. In particular,
extensions may involve data structures specifically designed
to support extraction and recovery of live state from the sys-
tem. To ensure atomic access to the state of a live system,
BD provides remote OS locking operations.

In a previous work [6], we have described OS extensions for
remote repair of damaged OS state with Backdoors. This
paper describes a system design using BD for failure de-
tection and recovery by state extraction from a system after
hang failures that make its processors/OS unavailable.

5 Failure Detection with Backdoors

We impose two major constraints on the design of the mon-
itoring function. First, it must not introduce overhead on
the monitor system M. This allows machines dedicated to
other tasks to be used as monitors. For example, nodes in
a computer cluster may both perform a distributed task and
monitor each other, without requiring dedicated monitors.
Second, the (M, T) pairs must be only loosely coupled: (i)
Observing T must not directly involve it. Since T might
be dead, M must not rely on remote execution for fetching
observed state from it, i.e., observation of T ’s state by M
must essentially translate into a 0-cycle operation on T . (ii)
T must not interact with M; in general, it may be oblivious
to its existence. (iii) Participation of T in monitoring must
be voluntary, by local state introspection and reporting.

5.1 Failure Detection with Sensor Box

To achieve these goals, we introduce an OS mechanism
called Sensor Box (SB) that allows M to observe the live-
ness or health of T by enabling a loose producer-consumer
relationship between the two. Entities (e.g., OS subsystems)
running on T are the SB producers. At the other end, M
fetches (reads) T ’s SB periodically through the backdoor

5

and uses it to assess T ’s health.

A Sensor Box (SB) is a structured collection of records
called sensors, allocated in the OS memory of the target
system. A sensor is a tuple < ID,C,L,V >, where ID is a
unique identifier, C is a class of sensors it belongs to, L is a
limit that depends on the sensor class, and V is a scalar (the
actual sensor). A monitored entity defines the limit L and is
responsible for updating the sensor value V .

We define three classes of sensors based on their function-
ality and detection properties:
(i) Progress sensors are monotonically increasing counters
that indicate the “liveness” of T . The monitored entity up-
dates V and defines a deadline L for updates. If V does not
change for L time units, the monitor may interpret the stall
as a failure. Examples of progress sensors are: number of
interrupts raised by a hardware clock with the clock time
period as the deadline, number of context switches in the
system with the time quantum as the deadline, etc.
(ii) Level sensors are counters that track resource utilization
on T . If the sensor value exceeds the threshold L, an excep-
tional event is detected by the monitor. Examples of level
sensors are: number of processes in a system with a limit on
the maximum number of processes, number of wired pages
in system memory with a limit on the maximum number of
such pages, etc.
(iii) Pressure sensors are counters incremented on T upon
occurrence of certain events. The monitor detects an ex-
ceptional condition if the number of times the event occurs
exceeds the threshold L. Examples of pressure sensors are:
the system could not allocate memory, the file descriptor
table in the system is full, etc.

Upon creating a sensor, a monitored entity specifies its iden-
tifier ID, its type C and the limiting value L. The monitored
entity must cooperate with a monitor by modifying V for its
associated sensor(s). This establishes a contract between
monitor and monitored. The monitored entity commits it-
self to updating V , according to the type of the sensor, by
increasing its value at intervals smaller than L to signal its
liveness (progress sensors), by tracking the value of a mea-
sured quantity (level sensors), or by incrementing its value
if it detects an exceptional condition (pressure sensors). The
monitor commits itself to retrieving the sensor and compar-
ing V and L. It detects an exceptional event if V has not
been updated within L time units for progress sensors, and
if V exceeds L for level and pressure sensors.

The SB is accessed by T (locally), and by M (remotely,
through the BD) using a simple interface:

sensor = new sensor(ID, C, L)
set sensor value(sensor, value)
sb view = fetch sb(nodeID)

where ID is the sensor identifier, C is the class
(progress, level, or pressure), and L is the limiting
value. On T , new sensor() creates a new sensor and
set sensor value() is used to update its counter value.

On M, fetch sb() creates a local copy sb view of the SB
of a monitored node identified by nodeID. In Section 10 we
show that an SB is light-weight both for local and remote
access over the BD, and that OS-level progress counters can
detect hang failures of the target OS both fast and reliably.

5.2 Failure Detector Accuracy

In a BD architecture, use of remote read operations for mon-
itoring makes the hardware providing it (Backdoor NICs,
physical links) a single point of failure. Even with redun-
dant access paths, accurate failure detection can still be un-
dermined by two events: (i) catastrophic failure in the path
reaching the monitored node; (ii) random message loss in
the underlying network.

Access path failures may lead to false positives in failure de-
tection. In particular, when using SB progress counters for
failure detection, it is impossible to distinguish path failure
from a real crash of the target node based only on reading
values of progress counters in the local view of the moni-
tored SB: in both cases, values would not change. A sound
design cannot rely on the reliability of programmable NIC
hardware (typically higher than that of standard network
hardware). To solve this problem, we take advantage of
link-layer failure detection mechanisms provided by exist-
ing hardware [24]. A monitor periodically probes the link-
layer to check the healthiness of the remote access path. If
the probe fails, the monitoring function is delegated to a
backup monitor with a healthy link to the target system.

Message loss while reading the SB may have the same ef-
fect as a link failure: if M sees no change in progress coun-
ters in the monitored SB because a remote read request was
lost, it may declare the monitored node dead. To cope with
message loss on BD NIC links, the monitor must adapt the
sampling rate R of the remote PB as a function of the path
loss characteristics, under deadline constraints imposed by
monitored entities. An efficient monitor must detect fail-
ures within a prescribed deadline and with a prescribed ac-
curacy [10, 17]. Using results in [17], it can be shown that
the low latency and low probability of message loss typi-
cal of existing hardware (e.g., RT T ∼ 10µs and pml � 10−8

for Myrinet [24])1 allow very high rates of sampling (practi-
cally limited only by the latency of fetching the remote PB),
without false positives in failure detection.

6 Recovering with Backdoors

Using Backdoors for recovery relies on the insight that, in
a failed machine, data structures holding “good” state may
be still alive in system memory while the OS is unavailable
(crashed, deadlocked, hung, etc.). It is appealing then to
think of a mechanism that would allow us to: (i) bypass the
unresponsive system to access this state from an external
system, (ii) extract it from the failed system, and (iii) rein-

1For lack of complete hardware specifications, we use as a conservative
upper bound for the probability of message loss the typical figure for the
(much less reliable) Ethernet.

6

state it and continue using it on another healthy machine.
While (i) above can be achieved using remote memory ac-
cess as described in Section 4, to achieve (ii) and (iii), a
BD architecture must also include OS support for external
manipulation of OS/application state of interest in the target
system.

6.1 The Continuation Box (CB)

There are several design constraints that the OS support for
recovery using BD must satisfy: (i) it must be light-weight,
imposing only minimal overhead for recovery support op-
erations during failure-free execution, and low cost during
the recovery phase; (ii) it must be silent during failure-free
execution, i.e., create no background traffic in the system;
(iii) it must not require CPU cycles on the failed node for
state extraction during recovery; (iv) if the target computer
is a server, it must be transparent to client OS/applications
both during failure-free execution and recovery.

To achieve these goals, we propose a light-weight Contin-
uation Box (CB), an OS abstraction that encapsulates fine-
grained application-specific and OS state associated with a
running application. The idea behind the CB abstraction is
that most of the user and OS-level state maintained for an
application (viewed as a collection of processes on a given
system) is either redundant or soft, i.e., it is already avail-
able or can be easily re-created by the same application run-
ning on a different system. The “essential” (hard) applica-
tion/OS state that distinguishes a particular instance of the
application is the only component that needs to be actually
recovered. The CB recovery model relies on extracting this
state from the memory of a failed system and reinstating
it in a healthy OS/application running on another system,
which can then continue the execution.

6.2 A CB for Internet Servers

We illustrate the Backdoors recovery model with the design
of a Continuation Box that can salvage live client sessions
from a failed Internet server and continue their service on
another machine. Providing recovery support is particularly
challenging for Internet services - which are usually struc-
tured as collections of multiple communicating processes
running on multiple machines, have highly dynamic state,
and operate under heavy client loads. Designing a light-
weight CB abstraction relies on the observation that most
Internet services maintain well-defined, fine-grained state
associated with each client session.

We assume an Internet service running on a cluster of ma-
chines in which multiple nodes running the same server ap-
plication exist. Service failover by state extraction exploits
node redundancy in terms of logical functionality. Recov-
ery operates at the granularity of one service session: it ex-
tracts and reinstates its state on a healthy node, and assists
the server application running there in resuming consistent
service to the client. Any other non-specific state needed to
continue the service (e.g., access to external databases, file

P1

LWS1 LWS2

Application

OS

Client

Continuation Box

TCP Conn IPC channel

P2

ex
po

rt

Figure 3: The OS view of a continuation box: application-
specific state and the state of communication channels.

repositories, etc.) is deemed accessible at the new node.

The session state may span multiple communicating pro-
cesses in a process service set executing work for the client.
This model is described by Figure 3, where the process ser-
vice set {P1,P2} handles the service session of one client.
Only a select process in the set, the accepting process (P1 in
Figure 3), communicates directly with the client. Every pro-
cess has a well-defined and reproducible initial state with
respect to a client. Processes in a process service set may
communicate via byte-stream channels (IPC or TCP/IP) and
may span multiple machines involved in servicing the ses-
sion.

For a server application, a CB is a set of well-defined states
reached in servicing a client session by each individual pro-
cess in the service set. Each state component can be indi-
vidually and independently used by its respective process
to resume service to the client. For the OS, a CB is an or-
dered set of per-process light-weight state components. To
support seamless communication across a failure, the OS
also includes in a CB the state of stateful communication
channels (inter-process and client-server).

6.2.1 The CB Recovery API

At the time a failure occurs, the server state with respect
to a client may be undefined or inconsistent. Even if this
state would be well-defined, we cannot rely on the OS to
dispatch upcalls to user-level handlers to fetch it from the
application since there will be no cycles to execute upcalls
on a dead machine.

To solve this problem, we maintain CBs in OS memory
and provide a minimal API that allows a server application
to specify light-weight snapshots (LWS) from which it can
safely resume execution in case of failure. A process must
export/import a LWS to/from a CB, completely describing
the point it has reached in the ongoing service session. The
LWS contents are opaque to the OS and to the CB extraction
protocol. Figure 3 describes the OS view of a CB consisting
of continuation points of processes in the service set (the S1

and S2 snapshots), along with communication state in IPC
channels and the TCP client connection.

The CB API establishes a contract between an application

7

process and the system. A process must execute the follow-
ing actions: (i) export LWSs periodically during service;
(ii) import the last LWS at the new server (during recovery)
and resume service to client. In exchange, a remote OS: (i)
extracts and reinstates the state of the CB at the new node,
and (ii) synchronizes the state of processes in the service set
with the state of their associated communication channels.

The main primitives of the CB API are:
cb = cb create(conn)
cb export state(cb, state buffer)
cb import state(cb, state buffer)
where cb is the CB object associated with a client (an
OS-specific identifier), conn is the client connection in the
root process, and state buffer is an application memory
buffer holding the LWS of the client session state in a pro-
cess. The accepting process creates a CB using cb create
on the accepted client connection. Processes in the ser-
vice set use cb export state to save LWSs to a CB and
cb import state to retrieve them (only once) for recovery
after a failure.

The OS of the new server must synchronize the two end-
points of a communication channel after reinstating a CB.
To achieve this, we adapt a mechanism previously devel-
oped by us in [37] which is based on a limited form of log-
based rollback recovery [13]. The synchronization mecha-
nism restores the session state in a process of the new server
with respect to a client by replaying all communication of
the process with peer processes or with the client using logs
of communication activity in the OS. To implement state
extraction from a dead machine, we adapt the mechanism
in two ways: we make it transparent to client (i.e., we do
not require the client OS/application to be modified in or-
der to coordinate with the server during recovery) and we
eliminate its dependency on the CPU/OS of the failed node
(since CB extraction must not involve the failed node).

The CB model of session recovery incurs low-overhead dur-
ing failure-free execution and enables fast recovery (as we
show in Section 10) due to the following features:

• it maintains critical session state in system memory,
allowing fast extraction after a failure;

• it enables zero-copy logging of in-kernel communica-
tion state using data buffers maintained by the OS;

• it enables zero-copy implementations of export by
mapping user-level LWS buffers into OS memory;

• it does not enforce any coordination between server
processes or between server and client;

• it is transparent to client OS/applications, i.e., it does
not require client OS/applications to change, nor does
it involve them in recovery2.

2The exception is retransmission by the client TCP of packets lost dur-
ing the failover.

6.2.2 Example: Session Recovery in a Web Server

We illustrate the use of the CB API with excerpts from a
recovery-enabled Apache [2] web server (we limit the ex-
ample to code esential to a static transfer).

Apache is structured in one controller process and a pool of
worker processes. The controller initializes the server and
creates the listening socket sd. A worker starts in function
child main and calls ap accept to wait for an incoming
client connection. ap accept returns the accepted connec-
tion csd and fills a request structure r with details of the
request. To enable session recovery in case of failure, the
worker maintains a LWS represented by:

struct snap {
size_t off; /* offset in the stream */
char *req; /* request received from client */
int reqlen; /* request length */

};

On accepting a conection, the worker creates a CB and at-
tempts to import state from it. The cb import call returns a
boolean value, TRUE if there exists a LWS in the CB (which
means this is a recovered session that was extracted by the
OS from another server) and FALSE if the session is an or-
dinary (new) one. This sets a recovered flag in the request
structure to further distinguish the two cases:

static void child_main(int child_num_arg) {
csd = ap_accept(sd, &sa_client, &clen);
r->cb = cb_create(csd);
r->recovered = cb_import_state(r->cb, snap);
r->snap = snap;

For a recovered session, the request is retrieved from the
LWS, otherwise it is read from the socket, then processing
continues on the normal path:

if (r->recovered) /* recovered */
memcpy(r->request,r->snap.req,r->snap.reqlen);
else { /* new */
ap_read_request(r);
memcpy(r->snap.req, r->request, r->reqlen);
r->snap.off = 0;
r->snap.reqlen = r->reqlen;
cb_export_state(r->cb, r->snap);

}
ap_process_request(r);

During execution, session state changes after a write to the
socket, as the offset in the serviced stream changes. The
worker records the change by exporting its LWS:

int ap_send_file(FILE *f, long length) {
offset = r->snap.off;
fseek(f, offset, SEEK_SET);
while(n = fread(buf, sizeof(char), len, f)) {
w = ap_bwrite(r->conn->client, buf, n);
r->snap.off += w;
cb_export_state(r->cb, r->snap);

8

This example shows that the API can be used in com-
plex server applications (Apache has 15,000 lines of code)
with minimal code modifications. We have similarly in-
strumented other web servers [27], a streaming audio
server [18], and the auction service [9] described in Sec-
tion 9.

7 Discussion and Limitations

We advocate Backdoors as a new way of designing systems
with a built-in alternate path for remote access to be used for
accurate monitoring, recovery and repair operations. Key to
our approach is that these healing actions can be performed
even after a failure or attack renders a machine unavailable
by conventional means. Recovery by extraction of critical
state from a failed system is a last resort action that can deal
with the most severe system-hang failures.

While this paper describes a prototype and a case study with
a tightly coupled implementation based on a local-area in-
terconnect, the BD idea does not rely on or require a partic-
ular carrier or interconnection technology. We are currently
exploring ways to build backdoors over wide-area and by
using standard access interfaces like USB. One promising
direction is the IETF effort for development and standard-
ization of remote memory access over the Internet [3].

One advantage of our fine-grained recovery model is that it
can be made more robust to propagation of bad state than
heavy-weight approaches that recover large amounts of un-
structured state from a system (checkpointing, process mi-
gration, VM migration, hot backups, etc.). Smaller state
components enable recovery of “good” state by identify-
ing and filtering occurrences of bad state (caused by mis-
configuration, corruption, etc.). For example, checksums
over application-controlled LWSs (Section 6) can prevent
it from injecting accidentally corrupted state into another
healthy system, while moving a whole process context or
VM would reinstate all “bad” state it may encapsulate.

Fine-grained memory protection through software and/or
hardware support has been studied in [39, 11, 40]. For full
recovery, our current BD implementation relies on the as-
sumption that critical state is not corrupted during a fail-
ure, a property that can be enforced using these or similar
techniques. The system cannot guarantee recovery of all
state if a faulty OS issues wild writes that corrupt critical
OS/application data structures.

We note however that kernel memory corruption is not a
major cause of failures. Failure statistics drawn from field
error data [36], synthetic fault-injection tests [11], and ex-
amination of problem report databases for open-source ker-
nel development [16] support this observation, showing
that: (i) memory corruption during an OS failure is a fairly
uncommon event; (ii) memory corruption tends to affect
mostly small-sized regions and occurs near the target ad-
dress; (iii) excluding corruption, the majority of remaining
faults consist of undefined state errors, e.g., a device driver
going into indefinite wait or deadlock. A simple inspection

of problem report databases for Linux or FreeBSD kernels
confirms that deadlocks and system hangs make the vast
majority of reported system failures. Moreover, especially
in a hardened OS, memory corruption errors can be repro-
duced, debugged and fixed over time, while timing and race
errors that lead to system hangs are much harder to repro-
duce and fix. It is exactly this latter class of failures that
Backdoors can reliably detect and recover from.

8 Prototype

We have implemented a BD prototype in the FreeBSD
4.8 x86 kernel, using Myrinet Lanai-XP programmable
NICs [24]. For remote monitoring and state extraction, we
modified the Myrinet GM 2.0 library to provide in-kernel
remote memory read/write operations between monitor and
target machines.

Remote OS access. Remote access is enabled by register-
ing the kernel memory of a target system with its NIC. Be-
cause FreeBSD allocates OS memory from a kernel virtual
memory map, a kernel virtual page may map to different
physical pages (if freed and reallocated). This is a prob-
lem for the NIC, which uses a translation table of virtual-to-
physical memory mappings and maintains a mapping cache
for fast lookups of frequently used mappings. To keep the
NIC table in sync with the kernel page tables, we dynami-
cally update virtual-to-physical mappings when needed (on
kernel memory allocations).

Performing dynamic mapping updates also requires flush-
ing stale entries from the NIC mapping cache. Flushing
the cache on every mapping update incurs a high cost on
a critical path (kernel memory allocation. and may create
synchronization problems between the host processor and
the slower Lanai. To avoid them, we chose instead to com-
pletely disable caching. The incurred penalty is negligible,
given the low frequency and volume of the monitoring traf-
fic (SB is light-weight and fits in one page, requiring just
one translation lookup for access). For recovery, an infre-
quent event, the penalty from not caching is paid only once.

Remote OS locking. To ensure consistent remote access to
in-kernel data structures, we implemented a remote OS lock-
ing mechanism that blocks execution of system calls and
interrupt handlers on the target machine. Remote OS lock-
ing uses remote read/write operations on a “giant” shared-
memory lock, in a two-phase handshake protocol. To ac-
quire the lock, a remote requester (monitor) atomically
writes a one-word lock request in target’s memory. Lock ac-
quire operations on the target OS were altered to check for
posted remote lock requests after acquiring the lock, but be-
fore allowing the local acquirer to enter the critical section.
If a remote lock request is pending, the target relinquishes
the lock to the requester by writing back to signal that the
remote OS lock is free, then blocks (spins) waiting on a flag.
To later release the lock, the holder writes the lock free flag
remotely and the target OS resumes normal operation. We
used remote OS locking during recovery to freeze a sus-

9

pected target and completely eliminate unwanted effects of
false positives in failure detection.

Failure detection. We implemented the SB as a stati-
cally allocated region in kernel memory, and its interface
as a pseudo-device to be accessed both from the kernel (at
the target, for liveness reporting via progress counters) and
from user space (at the monitor, for sampling the remote SB
in a monitor process). A monitor process samples the tar-
get SB, compares the current and previous view of the SB,
and identifies progress counters that have been stalled be-
yond their detection deadlines. If no progress is detected in
a critical counter, the monitor initiates recovery actions. In
our Internet service case study, an action may involve issu-
ing a system call to extract all connections bound to a spe-
cific port from a failed front-end, warn front-ends to redirect
their requests away from a failed mid-tier node, perform
cluster reconfiguration, etc.

Recovery support. We have implemented the CB mech-
anism (including support for TCP connections and OS
pipes) in the server OS kernel, without changes to client
OS/applications. The CB abstraction is implemented as a
data structure that maintains pointers to state components
(state buffers, communication logs, etc.) and log control
information (read/write pointers). Logging is performed in-
place using the kernel data buffers (TCP, pipe, etc.). State
snapshots are copied from user to kernel buffers during a
cb export system call. We have also implemented an op-
timized (no-copy, no-syscall) version of cb export using
kernel mapped user-level buffers.

Extraction of CB state from a failed machine requires re-
mote traversal of linked data structures. This involves recur-
sively fetching a data structure and issuing remote read re-
quests to follow pointers to other regions of memory stored
in it. Following remote pointers is an unavoidable cost of
the extraction protocol on chained native OS data structures.
Section 10 shows that this is not overly expensive for a CB,
which has a fairly low number of state components of small
size.

Our client session CB implementation enables extraction
of an established client TCP connection in any state and
is made transparent to client’s TCP by using IP address
takeover from the failed machine. We overlap CB extrac-
tion from a failed node with traffic on other salvaged con-
nections to the maximum extent possible, resuming traffic
on a client connection as soon as its server-side endpoint
has been reinstated at the new node. While inbound packets
may not reach the new node until IP takeover takes place,
packets buffered in the failed node are immediately sent out
and the new server can resume service and continue to gen-
erate new data for the client. We optimized CB extraction
for the case of an Internet server (which may hold thou-
sands of client connections, all bound to the same port) by
providing a single system call that extracts all session CBs
associated with a given server port from a failed machine.

Apache

Mod

JK2
TC

JBoss MySQL

AJP/TCP

JDBC/TCP
HTTP/TCP

 C1

 C2

 C3

Front-End Middle-Tier Backend

Figure 4: RUBiS application architecture.

9 Case Study

As a test application for our system we chose RUBiS [9], a
complex application that models an Internet auction service
similar to e-Bay, integrated in a multi-tier architecture. RU-
BiS provides item selling and bidding, user accounts, and
support for user rating/comments. The typical workload is
a mix of browsing and updating of persistent data.

In RUBiS, bidding requests are important to users as the
bidding system allows items to be listed for sale only for
limited periods of time. Moreover, the typical behavior of
bidders (wait until the end of the listing period in order to
place ”last minute” bids) makes their requests highly critical
in the moments before an auction closes. If such a request
is lost in a node failure, reissuing it from the client would
run the risk of missing the deadline, duplicating the request,
or not being re-admitted into an overloaded system. In con-
trast, in a BD-based system, the distributed state of a session
is recoverable at various nodes in the service architecture.
Once admitted, a request can be salvaged from any num-
ber of failed nodes, starting from the accepting front-end
through the intermediate tiers down to the database back-
end.

System Configuration. Figure 4 shows the RUBiS re-
quest processing path in a three-tier architecture running
web servers on front-end (FE) nodes, application servers in
the mid-tier (MT), and a transactional DB system on back-
end nodes. We run Apache 2.0.47 [2] with the mod jk2 con-
nector module on FE, the Tomcat 4.1 servlet container and
JBoss 3.2.2 EJB server on MT, and MySQL 4.0.15 as the
DB server. Client requests enter the system at the FE, pass
from Apache through the Tomcat connector on to the spec-
ified application servlet running on the MT in the Tomcat
container, and then on to JBoss, where RUBiS EJB Beans
implement the e-commerce logic of the application. From
here, queries are made via the JDBC driver directly to the
DB server.

RUBiS with Backdoors. We run RUBiS on a system in
which the FE and MT nodes have Backdoors support. The
back-end is assumed fault-tolerant through well-established
methods, e.g., DB replication. We make client sessions re-
coverable by modifying Apache and RUBiS beans to use
the CB API. The CB API adds only 500 lines of code in
Apache and 30 lines in RUBiS.

When a request enters the system, the FE tags it with a glob-

10

State size export import CB extraction
[KB] [µs] [µs] [µs]

1 11 8 158
5 20 10 258
10 28 24 358

Table 1: Cost of CB system calls and CB state extraction.

ally unique request ID, used to identify CB-encapsulated
state belonging to the same session. On an FE node, the
LWS of a session contains the request, its ID, and the off-
set reached in the output stream sent to client. On an MT
node, where the request is translated into a DB transaction,
the LWS contains the request ID, the transaction identifier,
and the result of the transaction (one database record). The
snapshots are light-weight, averaging only 99 and 44 bytes
in front-end and mid-tier, respectively.

If an FE node fails, its monitor notifies other FE node(s)
to extract the session CBs from it and reissue pending re-
quests to the MT. If an MT node fails, its monitor noti-
fies all FEs to reissue requests serviced by the failed MT
node. For requests replayed during recovery, an MT node
obtains the status (abort/commit) of the transaction from the
database and retrieves the transaction result from the CB.
It then uses this information to decide whether to reissue
the transaction, and to rebuild the reply to be sent back to
the client. This scheme relies on simple DB support for re-
connects to achieve exactly-once semantics for DB transac-
tions, while correctly (re)generating replies. To implement
it, we have modified MySQL to support database reconnects
and queries for the status of a transaction.

10 Experimental Evaluation

The goal of our evaluation is to show that our system reli-
ably detects failures, is non-intrusive to server applications
and has minimal impact on the client. We first perform over-
head microbenchmarks and then present results of the ex-
periments run on our RUBiS service testbed.

The experimental setup consists of DELL PowerEdge 2600
2.4 GHz, 1 GB RAM dual-processors interconnected by 1
Gb/s Ethernet. Server nodes run FreeBSD 4.8 incorporating
our BD prototype. The BD is implemented with Myrinet
Lanai-X NICs with a 133MHz PCI-X interface [24].

To generate realistic fault injection tests, we have modified
several Ethernet network drivers (Intel Pro Gigabit Ethernet,
3COM 3c59x, etc.) to insert programming errors that cause
a system to crash. Victim systems were also subject to con-
trolled synthetic failures: processor halt, disabling the inter-
rupt controller, selectively disabling device interrupts, etc.,
or were simply frozen by trapping into the kernel debugger.
Failures were detected by progress counters on number of
interrupts and context switches.

10.1 Microbenchmarks

SB/CB API Overhead and CB Extraction Cost. In the

0

50000

100000

150000

200000

250000

0 5 10 15 20

P
ro

gr
es

s
co

un
te

r
va

lu
e

time (s)

5 clients
15 clients
45 clients

135 clients

Figure 5: Variation of an OS interrupt counter with time
under different load conditions.

first experiment, we evaluate the run-time overhead of the
SB and CB API by measuring the latency of the calls de-
scribed in Section 6. Of the two components, the SB API
is extremely light-weight, as it only writes integer values
to an SB. On the other hand, implementing an efficient CB
API is crucial to the failure-free performance of a system.
Table 1 (columns 2-4) shows the cost of CB calls for three
values of the CB state size. We can see that the CB API is
also light-weight and imposes little run-time overhead for
updating and retrieving CB state. We conclude that partici-
pation in monitoring and providing recovery support should
be light-weight on a server node.

In the second experiment, we estimate the costs of extract-
ing a CB from a failed system as a function of the CB
state size. We use a recoverable (i.e., augmented with the
CB API) synthetic server application that does not generate
data. This eliminates variability in the amount of state ex-
tracted from the server node while we control the amount
of CB state by conveniently varying the size of the exported
snapshots in the server application, between 0 and 10 KB.
We measure the time taken by CB extraction to move and
reinstate the state of a TCP connection along with the as-
sociated application-level snapshot. This setup is typical of
state extraction from front-end nodes during recovery in a
multi-tier architecture. The last column in Table 1 shows
the results, proving that CB state extraction is light-weight
for the recovery node. For comparison, the raw latency of a
remote memory read is about 16 µs at small payloads, and
118 µs with a 10 KB payload.

Monitoring Overhead. On a monitor node, the overhead
includes (i) monitoring cost (reading the local view of the
monitored SB, comparing counter values, etc.), and (ii) cost
of transferring the remote SB from the monitored node. To
determine it, we measured the CPU usage of a monitor pro-
cess while varying the sampling rate of a remote SB with
100 progress counters. In the worst case (sampling the PB
in an infinite loop), the CPU usage was 46%. Sampling
every 10 ms (the lowest granularity of a timer), the CPU us-
age is about 5%, while at 100 ms it drops under 1%. This
shows that fast failure detection can be performed with low
overhead on a monitor node.

Counter Dynamics. To study dynamics of OS progress
counters, we collected traces of a progress counter for the

11

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 8000

 0 200 400 600 800 1000 1200

R
eq

ue
st

s
pe

r
m

in
ut

e

Number of clients

Unmodified
Recoverable FE

Recoverable FE+MT

Figure 6: Throughput of recoverable RUBiS is unaffected
by recovery support.

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 0 200 400 600 800 1000 1200

La
te

nc
y

(m
s)

Number of clients

Unmodified
Recoverable FE

Recoverable FE + MT

Figure 7: Latency of recoverable RUBiS is unaffected by
recovery support.

number of interrupts serviced in a system running a syn-
thetic streaming server. Figure 5 shows the counter dynam-
ics for various loads (number of client streaming sessions).
We can see that while the counter is updated regularly (con-
stant slopes), the rate of update depends on the load. This
indicates that while such an activity-driven counter is a good
indicator of overall system health, absolute reliance on it
may lead to wrong decisions on an idle system with badly-
chosen detection deadlines. The experiment outlines the
need for a careful choice of detection deadlines for coun-
ters that are load-sensitive and/or can be easily overridden
by a programming error. In general, such counters should
be backed by more general watchdog-style counters (e.g.,
real-time clock) in deciding that a node has failed.

10.2 Real Applications

We have used our BD-based system to support recoverable
sessions in several open-source servers [2, 27, 18] and ex-
tensively used them to validate the correctness of the recov-
ery scheme. In this section, we evaluate the performance
and correctness of our system using RUBiS, the multi-tier
auction service described as a case study in Section 9. The
experimental setup consists of two front-end nodes (FE),
two mid-tier nodes (MT), and one back-end node. In crash
experiments, failures are injected in FE and MT nodes at ar-
bitrary points during a run and sessions serviced by a victim
node are recovered on the alternate node in its tier.

Failure-free Overhead.

We show that using the CB API has no impact on client
perceived performance by running the same workload on
“base” servers (Apache in FE and JBoss in MT) and on re-

coverable servers, i.e., augmented with the CB API. The
workload is a mix of auction requests that emulates client
browsers using a methodology similar to [9], with think-
times as specified by the TPC-W benchmark. We increase
the load by varying the number of clients in runs of 6 min-
utes each. Figures 6 and 7 show the aggregate throughput
and average latency perceived by clients for the base case,
recoverable FE, and recoverable FE and MT. The system
has identical behavior in all cases: the curves overlap at
underload and exhibit statistically small variations at satu-
ration (when performance degrades abruptly) due to nonde-
terministic system behavior.

Failover Correctness. The goal of this experiment is to
verify the correctness of recovery for RUBiS sessions on
our BD-based architecture. The workload generator sim-
ulates requests from 200 clients, with a heavy synthetic
workload in which each request performs a database trans-
action consisting of multiple queries and an update on the
same table. We conduct multiple crash-test runs, each for
one of two types of request: user registration and bid re-
quests. After each run, we check the correctness of session
failover with two tests: (i) End-to-end consistency: every
client request is correctly matched by its expected reply; (ii)
Database integrity: there are no missing or duplicate trans-
actions in the database. The first test verifies the integrity
of the communication channels in the request-replay path.
To identify duplicate transactions, we rely on the RUBiS
database schema which treats each update as a completely
new one, and inserts a new record for it in the target table.
All runs validate the correctness of our system: each client
request receives the correct reply and every database trans-
action completes properly.

Failover Latency. To evaluate the impact of failure detec-
tion and recovery on client-perceived performance, we sub-
ject the system to crashes under a workload of 200 clients
generating browse transactions in runs of 90 s, with nor-
mally distributed think-times with 7 s mean and a slow-
down factor of 0.5 (see [9] for details). With this workload,
the node CPU utilization is about 45% on FE and 15-30%
on MT. We impose a failure detection deadline of 10 ms and
emulate a crash in FE, MT, or both, 14 seconds into the run,
by “freezing” the victim node(s) through remote OS lock
operations initiated by the client machine.

Figure 8 shows a timeline of events from detection of the
crash to the end of recovery, in the worst-case, i.e., for the
last recovered session. We define the end of recovery for
a session as the moment the first byte sent out to the client
by the FE after failover. When an MT node is a victim, we
also plot the moment the request is reissued. The detection
latency is only limited by our choice of detection deadlines
and sampling period (as low as 10 ms). The worst-case
recovery latency is under 25 ms in the 2-node failure case.
The best case values were 1.3 ms, 1.1 ms and 6.9 ms, with
averages of 11.8 ms, 7.5 ms and 19.5 ms for the FE, MT, and
FE+MT crashes, respectively. This shows that failover is
fast and should practically have no effect on client perceived

12

 0 2 4 6 8 10 12 14 16

Time (ms)

Detection
Import state

First byte to client

 0 2 4 6 8 10 12 14 16

Time (ms)

Detection
Request reissue

First byte to client

 0 5 10 15 20 25

Time (ms)

Detection
Import state

Request reissue
First byte to client

Figure 8: Recovery timeline across an FE, MT, and FE+MT crash (left to right), in the worst case (for the last recovered
session). The crash occurs at -10 ms. The worst-case recovery latency is under 25 ms.

 20

 30

 40

 50

 60

 70

 80

 90

 100

 0 5 10 15 20 25 30
 0

 50

 100

 150

 200

 250

T
hr

ou
gh

pu
t (

K
B

/s
)

C
on

ne
ct

io
n

ra
te

Time (s)

Throughput
Connection rate

Crashpoint

 20

 30

 40

 50

 60

 70

 80

 90

 100

 0 5 10 15 20 25 30
 0

 50

 100

 150

 200

 250

 300

 350

 400

T
hr

ou
gh

pu
t (

K
B

/s
)

C
on

ne
ct

io
n

ra
te

Time (s)

Throughput
Connection rate

Crashpoint

 0

 10

 20

 30

 40

 50

 60

 70

 80

 0 5 10 15 20 25 30
 0

 20

 40

 60

 80

 100

 120

 140

T
hr

ou
gh

pu
t (

K
B

/s
)

C
on

ne
ct

io
n

ra
te

Time (s)

Throughput
Connection rate

Crashpoint

Figure 9: Aggregate throughput and connection rate seen by clients across an FE crash, MT crash, and FE+MT crash (from
left to right). Vertical lines mark the moment of the crash.

performance.

Figure 9 shows the variation of aggregate throughput (as
bytes received by all clients) and the rate of established
client connections, measured in bins of 1 s each, in a time
window centered around the crash. The effect of crash and
recovery is indistinguishable from normal workload varia-
tions. The jittery throughput is a well-known problem of the
RUBiS client [8], and our concern was that such a ”jumpy”
workload profile would obscure the effects of fault han-
dling. In fact, in Figure 9 there are no “hidden” side-effects
of the failure simply because recovery is fast.

This should be even more evident considering that the low
recovery latency compares extremely well with effects of
packet loss on normal client-server TCP (data) traffic over
the Internet: (i) For server-to-client traffic, recovery intro-
duces a “gap” in the outgoing bytestream comparable to In-
ternet RTTs and granularity of TCP timers (tens to hundreds
of ms over wide-area). This means that the impact of re-
covery as perceived by a remote client is not worse than
that of a server packet loss in the Internet! This is because
packet loss, a far more common event than server failures,
results in a (potentially successful) retransmission by the
server TCP after a timeout estimated from RTT measure-
ments. (ii) For client-to-server traffic, data packets arriving
at the server during recovery are lost. If all packets in a
burst are lost and no other (new) packets are sent, the client
TCP will timeout and retransmit. Since recovery is fast,
the retransmitted packets will most likely arrive at the new
server, after failover is completed, generating the expected

ACK. The effect of the failover is again equivalent to a (sin-
gle) packet loss. Moreover, even this may be obscured if
the failover occurs within a large client retransmit timeout,
and newer packets from the client reach the new server after
failover. In this case, the server TCP’s fast retransmit mech-
anism will elicit a retransmission of the missing packets by
the client TCP.

11 Conclusions

We have described Backdoors, a novel system architecture
that enables applications to survive software failures that
render a computer system unavailable (system hangs, OS
crashes, deadlocks, etc.) Backdoors uses off-the-shelf pro-
grammable NICs for remote access to the memory of a ma-
chine even when its processors are unavailable due to severe
OS failures, and defines OS extensions for remote access to
light-weight application and OS state. Using Backdoors,
a remote system can perform accurate monitoring without
CPU overhead on the target system and, upon detecting its
failure, can extract and reinstate light-weight state from the
failed system.

We describe the design of Backdoors OS abstractions that
support remote nonintrusive monitoring (Sensor Box) and
recovery of critical application and OS state (Continuation
Box). We show how Backdoors can be used to enable nodes
in cluster-based Internet servers to perform mutual monitor-
ing of their liveness, and to take over client sessions from
failed nodes.

13

We have implemented a Backdoors prototype in FreeBSD
and present a case study and results of an experimental
evaluation with a complex, transactional, multi-tier Internet
service. We show that our system can detect failures and
can recover interactive client sessions from multiple failed
nodes with no disruption to client sessions, without compro-
mising consistency of the data seen by clients or database
integrity. The code for Backdoors and test applications is
available from http://discolab.rutgers.edu/bda.

References
[1] L. Alvisi, T. Bressoud, A. El-Khashab, K. Marzullo, and

D. Zagorodnov. Wrapping Server-Side TCP to Mask Con-
nection Failures. In Proc. IEEE INFOCOMM ’01, Apr. 2001.

[2] Apache HTTP Server. http://httpd.apache.org.
[3] S. Bailey and T. Talpey. The architecture of direct data place-

ment (ddp)and remote direct memory access (rdma)on inter-
net protocols. IETF Draft, jan 2004.

[4] M. Baker and M. Sullivan. The Recovery Box: Using Fast
Recovery to Provide High Availability in the UNIX Environ-
ment. In Proc. Summer ’92 USENIX, 1992.

[5] J. F. Bartlett. A NonStop Kernel. In Proc. 8th Symp. on
Operating Systems Principles (SOSP), 1981.

[6] A. Bohra, I. Neamtiu, P. Gallard, F. Sultan, and L. Iftode.
Remote Repair of OS State Using Backdoors. In Proc. Int’l.
Conference on Autonomic Computing, May 2004.

[7] T. C. Bressoud and F. B. Schneider. Hypervisor-based Fault
Tolerance. In Proc. 15th ACM Symposium on Operating Sys-
tems Principles (SOSP), Dec. 1995.

[8] G. Candea, Feb. 2004.
[9] E. Cecchet, J. Marguerite, and W. Zwaenepoel. Performance

and Scalability of EJB Applications. In In Proc. 17th Conf.
on Object-Oriented Programming, Systems, Languages and
Applications, Oct. 2002.

[10] T. Chandra and S. Toueg. Unreliable Failure Detectors
for Reliable Distributed Systems. Journal of the ACM,
43(2):225–267, 1996.

[11] P. M. Chen, W. T. Ng, S. Chandra, C. Aycock, G. Raja-
mani, and D. Lowell. The Rio File Cache: Surviving Op-
erating System Crashes. In Proc. Architectural Support for
Programming Languages and Operating Systems (ASPLOS),
1996.

[12] D. Dunning et al. The Virtual Interface Architecture. IEEE
Micro, 1998.

[13] E. N. M. Elnozahy, L. Alvisi, Y.-M. Wang, and D. B. John-
son. A Survey of Rollback-Recovery Protocols in Message-
Passing Systems. ACM Computing Surveys (CSUR),
34(3):375–408, 2002.

[14] C. Fetzer. Perfect failure detection in timed asynchronous
systems. IEEE Trans. Computers, 52(2):99–112, 2003.

[15] C. Fetzer and F. Cristian. Fail-Awareness in Timed Asyn-
chronous Systems. In Proc. 15th Symp. on Principles of Dis-
tributed Computing (PODC), Philadelphia, 1996.

[16] FreeBSD. Freebsd problem reports.
http://www.freebsd.org/cgi/query-pr-summary.cgi.

[17] I. Gupta, T. Chandra, and G. Goldszmidt. On Scalable and
Efficient Distributed Failure Detectors. In Proc. 20th Annual
ACM Symp. on Principles of Distributed Computing, Apr.
2001.

[18] Icecast Streaming Server. http://www.icecast.org.
[19] The Infiniband Trade Association.

http://www.infinibandta.org, August 2000.
[20] R. R. Koch, S. Shortikar, L. E. Moser, and P. M. Melliar-

Smith. Transparent TCP Connection Failover. In Proc. Intl.
Conference on Dependable Systems and Networks (DSN),
2003.

[21] Mellanox, Inc. http://www.mellanox.com.
[22] S. Mishra, M. Marwah, and C. Fetzer. TCP Server Fault Tol-

erance Using Connection Migration to a Backup Server. In
Proc. Intl. Conference on Dependable Systems and Networks
(DSN), 2003.

[23] J. Mogul. Personal communication, June 2003.
[24] Myricom: Creators of Myrinet. http://www.myri.com.
[25] M. J. K. Nielsen. Titan System Manual. Technical Report

WRL-86-1, HP Labs, Sept. 1986.
[26] S. Osman, D. Subhraveti, G. Su, and J. Nieh. The design and

implementation of zap: A system for migrating computing
environments. In Proc. of the Fifth Symposium on Operat-
ing Systems Design and Implementation (OSDI 2002), Dec
2002.

[27] V. S. Pai, P. Druschel, and W. Zwaenepoel. Flash: An Ef-
ficient and Portable Web Server. In Proc. USENIX Annual
Technical Conference. USENIX Association, June 1999.

[28] D. Patterson et al. Recovery Oriented Computing (ROC):
Motivation, Definition, Techniques, and Case Studies. Tech-
nical Report UCB//CSD-02-1175, UC Berkeley Computer
Science, Mar. 2002.

[29] X. Qie, R. Pang, and L. Peterson. Defensive Programming:
Using an Annotation Toolkit to Build Dos-Resistant Soft-
ware. In Proc. 5th Symposium on Operating Systems Design
and Implementation (OSDI), December 2002.

[30] C. P. Sapuntzakis, R. Chandra, B. Pfaff, J. Chow, M. S. Lam,
and M. Rosenblum. Optimizing the Migration of Virtual
Computers. In Proceedings of the 5th Symposium on Op-
erating Systems Design and Implementation, Dec. 2002.

[31] M. Seltzer, Y. Endo, C. Small, and K. A. Smith. Dealing with
Disaster: Surviving Misbehaved Kernel Extensions. In Proc.
2nd Symp. on Operating Systems Design and Implementation
(OSDI), Oct. 1996.

[32] M. Seltzer and C. Small. Self-Monitoring and Self-Adapting
Operating Systems. In Proc. 6th Workshop on Hot Topics in
Operating Systems, May 1997.

[33] E. G. Sirer, D. Becker, M. Fiuczynski, C. Chambers, and
S. Eggers. Extensibility, safety and performance in the spin
operating system. In Proc. 15th Symp. on Operating Systems
Principles (SOSP), Dec. 1995.

[34] A. C. Snoeren, D. G. Andersen, and H. Balakrishnan. Fine-
Grained Failover Using Connection Migration. In Proc.
3rd USENIX Symp. on Internet Technologies and Systems
(USITS), Mar. 2001.

[35] C. Soules et al. System support for online reconfiguration. In
In Proc. USENIX Annual Technical Conference, June 2003.

[36] M. Sullivan and R. Chillarege. Software Defects and Their
Impact on System Availability - A Study of Field Failures
in Operating Systems. In Proc. 21st Int’l. Symp. on Fault-
Tolerant Computing (FTCS-21), 1991.

[37] F. Sultan, A. Bohra, and L. Iftode. Service Continuations:
An Operating System Mechanism for Dynamic Migration of
Internet Service Sessions. In Proc. Symposium in Reliable
Distributed Systems (SRDS), Oct. 2003.

[38] F. Sultan, A. Bohra, I. Neamtiu, and L. Iftode. Nonintrusive
Remote Healing Using Backdoors. In Proc. 1st Workshop
on Algorithms and Architectures for Self-Managing Systems,
June 2003.

[39] M. M. Swift, B. N. Bershad, and H. M. Levy. Improving the
Reliability of Commodity Operating Systems. In Proc. 19th
Symp. on Operating Systems Principles (SOSP), Oct. 2003.

[40] E. Witchel, J. Cates, and K. Asanović. Mondrian memory
protection. In Proceedings of ASPLOS-X, Oct. 2002.

[41] D. Zagorodnov, K. Marzullo, L. Alvisi, and T. C. Bressoud.
Engineering Fault-Tolerant TCP/IP Servers Using FT-TCP.
In Proc. Intl. Conference on Dependable Systems and Net-
works (DSN), 2003.

[42] Y. Zhou, P. M. Chen, and K. Li. Fast Cluster Failover using
Virtual Memory-mapped Communication. In Proc. 13th In-
ternational Conference on Supercomputing, pages 373–382.
ACM Press, 1999.

14

