Collaboration between Rutgers & Paris 6

Supervised by:
- Prof. Liviu Iftode - Univ. of Rutgers - (iftode@cs.rutgers.edu)
- Prof. Fabrice Kordon - Univ. Pierre & Marie Curie (UPMC) (fabrice.kordon@lpt6.fr)

M.S. Students from UPMC:
- Xavier Renault (xavier.renault@etu.upmc.fr)
- Jean-Baptiste Voron (jean-baptiste.voron@etu.upmc.fr)

M.S. : Distributed Systems & Applications

- Courses:
 - Operating System aspects:
 - Linux Kernel and Posix systems
 - Embedded and Real Time
 - Middleware internals
 - Distributed aspects:
 - Algorithms: Proof & Complexity
 - Interoperability with middleware
 - Modeling aspect
 - Modeling Theory, Verification, Performances...
 - “Development” transversal approach

University Pierre & Marie Curie

- Based in the Latin Quarter, in Paris
- One of the largest university of science and medicine in France, and indeed in Europe
 - 4,000 teaching academics / researchers (+6,000 staffs)
 - 180 laboratories
 - 30,000 students (including 8,000 in PhD)
 - About 15 campus all over France (10 around Paris)
 - 6 Centers of Excellence selected by the European Commission
- Major strengths:
 - Mathematics (first university in the world - source: SourceWatch)
 - Computer science (top-3 in France)
 - Physics
Our laboratory: LIP6

- Administrative aspect (some statistics...):
 - 150 academics + 250 Ph.D students + 30 engineers
 - Budget: 8 millions euros/year
 - 9 start-up: Ucopia, Avertec, Surf Technology...
 - 36 softwares

- Active participation in numerous European Projects

LIP6: Thematics Departments

- Systems on Chip
 - DESIR
 - Decision
 - Intelligent Systems
 - Operational Research
 - Multi-Agent Systems
 - Animats
 - Distributed Database
 - Symbolic learning
 - Textual & Multimedia informations research

- Integrated Systems
- Integrated Circuits

LIP6: Thematics Departments

- Data & Automatic Learning
- DESIR
- Systems on Chip
- Integrated Circuits
- Distributed Database
- Symbolic learning
- Textual & Multimedia informations research
LIP6 : Thematics Departments

- Systems on Chip
- DESIR
- Data & Automatic Learning
- Scientific Computing

LIP6

The Network & Distributed Systems department

- Overview
 - **Problems**: Interoperability, heterogeneous environment, adaptability, QoS
 - **Goal**: Development and design of future networks and systems
 - **4 Teams (head : Bertil Folliot)**:
 - **MoVe** (Modeling and verification) - F.Kordon
 - **Regal** (Distributed algorithms and large scale applications) - P.Sens
 - **NPA** (Networks and Performance analysis) - S.Fdida
 - **Phare** (Networks infrastructures for mobility) - G.Pujolle
 - ~105 members:
 - 41 teaching academics / researchers
 - ~9 staff
 - 3 Post Doc.
 - 52 PhD

MoVe Team (Modeling and Verification)

- **Presentation**
 - **Scientific Head**: Fabrice Kordon (fabrice.kordon@lip6.fr)
 - 21 faculty members
 - 17 Ph. D.
 - about 10 M.S. students/engineers/post-doc
 - **Focus**: Modeling & Analysis of Distributed Systems
 - interoperable components
 - execution infrastructure (middleware)
 - **Goal**: Ensure reliability on software development using models
 - **Context**: MDD (Model Driven Development)
 - Applied to distributed systems and applications
MoVe : Projects & Cooperations

- **Internal Projects**
 - ModFact
 - Spot
 - MetaScribe
 - CPN-AMI
 - PolyORB
 - ITS

- **Industrial cooperations**
 - THALES
 - COFROUTE
 - SOFTEAM

- **Academic cooperations**
 - University of Geneve
 - University of Zaragoza
 - University of Turin
 - University of Luxembourg
 - Naval Postgraduate School
 - University of Quebec
 - University of Rutgers
 - etc...

- **International consortiums and organizations**
 - ObjectWeb, OMG, ISO

MoVe : Research axes

- **Modeling / Programming**
 - Languages / Modeling techniques
 - Paradigms
 - Infrastructures

- **Verification Theory**
 - Petri nets
 - Structural verification
 - Model-checking

- **Model Engineering**
 - Meta-Model
 - Advance Programing Techniques

MoVe : A few projects

- **CPN-AMI**
 - Petri net based CASE environment
 - Groups tools suitable for Petri net modeling and verification
 - Embedded LIP6 tools and other partners contributions

- **PolyOrb**:
 - A schizophrenic middleware (with Telecom Paris)
 - A polymorphic, reusable infrastructure for building or prototyping new middleware adapted to specific application needs.
 - Provides middleware-to-middleware interoperability (M2M)
MoVe : A few projects

• PolyOrb : A schizophrenic middleware (with Telecom Paris)
 - A polymorphic, reusable infrastructure for building or prototyping new middleware adapted to specific application needs.
 - Provides middleware-to-middleware interoperability (M2M)

MoVe : A few projects

• Intelligent Transportation Services (ITS) analysis:
 - Context : Automated motorways (to provide driver assistance).
 - Approach centered on communication between cars (P2P organization).
 - Use of the motorway infrastructure.
 - Needs : How to design and analyze such systems

MoVe : A few projects

• ITS (Intelligent Transportation Services) :
 - Context : Automated motorways (to provide driver assistance).
 - Approach centered on communication between cars (P2P organization).
 - Use of the motorway infrastructure.
 - Needs : How to design and analyze such systems

MoVe : A few projects

• PolyOrb : A schizophrenic middleware (with Telecom Paris)
 - A polymorphic, reusable infrastructure for building or prototyping new middleware adapted to specific application needs.
 - Provides middleware-to-middleware interoperability (M2M)
Stage about outdoor computing

• Context
 • Vehicular computing, ad-hoc networks
 • Smart Messages (and Spatial Programming paradigm)

• Problem
 • Avoid traffic congestion
 • Find out a distributed algorithm
 • How to use formal methods?

Approach

Roadmap

• Identify scenarii to help the behavior's specification
• Hypothesis (to make the work feasible)
 ♦ Use of Smart Messages Platform
 ♦ Data about other cars are available (no data aggregation)
• Constrains: informations available, threshold, etc...
• Verification may be a problem, according to the complexity
• Future work:
 ♦ Handle data aggregation, relax some other hypothesis, ...

Use of formal methods to improve monitoring strategies

• Context
 ♦ Intrusion Detection System (IDS)
Use of formal methods to improve monitoring strategies

- **Context**
 - Intrusion Detection System (IDS)

 Detection
 - Misuse Detection
 - Anomaly Detection
 - Specification-Based

 Uses signatures to recognize attack
 - ✓ Low false positive rate
 - X Less effective against new attacks

- Specification & Verification aspects
 - Specification:
 - How to define a behavior?
 - Which system parameters do we have to monitor?
 - What kind of responses do we propose to block or stop an attack?
 - Use of a Domain Specific Language (DSL)? (high level language)
 - Verification:
 - ✓ Give guarantees on program behavior before execution
 - ✓ Give guarantees on program behavior while running
 - ✓ Ensure responses are let to reach a "correct" system behavior
Use of formal methods to improve monitoring strategies

- System design
 - Modeling
 - Verification
 - Specification
 - Behavior Model
 - Monitor
 - Inputs

- A close & wide approach
 - Petri Net model
 - DSL
 - Expression of monitoring strategies using a DSL
 - Code Generation
 - Runtime

Conclusion

- The beginning of a cooperation between our two universities
- Each university brings its own knowledge
- Two projects - Use of formal methods
 - Outdoor computing
 - Online-monitoring
- Workshop: June 2006
- First results?

Questions

- Any questions?