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Abstract—Recent advances in wireless technology allow Java- user-defined distributed application which executes on nodes
enabled devices, such as cell-phones and PDAs, to create mobilef interest named by properties and uses explicit execution
ad hoc networks, over Whlch distributed applications can be migration to move between these nodes. Each node has a
executed. Although Java shields the programmers from the . . .
heterogeneity of the hardware platforms, a common middleware virtual machine for SM execution and a name-based memory,
architecture is needed to support a cooperative execution envi- called tag space. The SMs use the tag space for content-based
ronment in these networks. naming and persistent shared memory. An SM carries the

In this paper, we present a portable runtime system for routing code and routes itself at each node in the path toward
Smart Messages (SMs), a middleware architecture based ong, poqe of interest. The SM middleware architecture achieves

execution migration, that we designed and implemented on top VTR . .
of an unmodified Java virtual machine. An SM is a user-defined flexibility in networks of resource constrained devices by

distributed application which executes on nodes of interest named |€tting the applications dynamically discover nodes providing
by properties and uses explicit migration to move between these services or content of interest.

nodes. The main benefits provided by SMs are adaptability to ~ SMs represent an attractive alternative to traditional dis-
highly dynamic network conditions and ease of deployment for ihuted computing based on end-to-end data transfers in

new applications in the network. To make use of the resources . . .
at nodes efficiently, we have designed a lightweight migration mobile ad hoc networks for two main reasons. First, SMs can

mechanism suitable for mobile ad hoc networks where limited adapt to highly dynamic network configurations by instructing
bandwidth and mobility impose constraints on the amount of data the routing code to return the control to application when the
that can be transferred. This migration mechanism is based on network conditions change. Since its execution state is already
Java bytecode instrumentation, and it is the key to making the 4t the same node, the SM can quickly adapt to these changes.

system portable to any Java-enabled device. The experimental - . S :
results for applications executed over a testbed consisting of HP Second, SMs simplify the deployment of new applications in

iPAQs communicating through 802.11 wireless cards demonstrate @d hoc networks. A user can inject SMs at any node in the

the feasibility of our portable runtime system. network, and consequently the SMs can migrate their code to
any node that does not have it.
|. INTRODUCTION The original implementation of the SM middleware ar-

Recently, we have been witnessing a significant growth ahitecture was based on a modified Java virtual machine
the number of Java-enabled wireless devices [1]. Benefitifun's KVM [3]). Having access to the virtual machine (VM)
from a strong support from industry, cell-phones and PDAsource code, we were able to implement an efficient migration
are the most representative Java-enabled devices currentchanism. Additionally, the entire software needed for SM
available on the market. These devices are mostly used éxecution at nodes was implemented inside the VM to improve
local computations or downloading data from web servetie overall performance of the system. This implementation,
and personal computers. Since these devices are equipakidough powerful and efficient, is not portable. Since most of
with short-range wireless network interfaces (e.g., 802.1the new ubiquitous devices come with a pre-installed Java VM
Bluetooth), they can create mobile ad hoc networks whigand most of the time users do not want to modify the system
can be programmed to execute distributed applications.  software on their devices), it would be beneficial to have the

For instance, a person may use a program installed 8Ms running over a portable runtime system implemented on
her cell-phone to book a free cab which is a part of @p of an unmodified VM.
network of wireless-enabled cabs. Other examples includeThe main issue to be dealt with in a pure Java middleware
drivers inquiring other cars about the traffic conditions oarchitecture is how to perform migration without having access
particular routes, customers paying their bills in restaurartts the VM internals. The execution state is located inside
using their PDASs, or peer-to-peer games among ad hoc grotips VM and is not directly accessible to the external world.
of students in a campus. The lack of a common executido implement a portable runtime system that runs on top
environment, however, precludes the development of sushany Java VM (i.e., pure Java code), we have designed a
distributed applications on top of mobile ad hoc networks ahigration approach based on Java bytecode instrumentation.
Java-enabled devices. Although Java shields the programnieng approach is also well suited for mobile ad hoc networks
from the heterogeneity of the hardware platforms, a simplehere limited bandwidth and mobility impose constraints on
and flexible middleware architecture is needed to supportttee amount of data that can be transferred. It offers a general
cooperative execution environment in these networks. mechanism that can be applied to other systems based on

In this paper, we present a portable runtime system ferecution migration for Java programs.

Smart Messages (SMs) [2], a middleware architecture basedVe have developed a prototype implementation, where
on execution migration, that we designed and implementall the components of the SM middleware architecture are
on top of an unmodified Java virtual machine. An SM is amplemented within a portable runtime system that can run



Smart Message Smart Message
Arrival Admissi Virtual Migration i=0;
Manager Machine while(i<N){

migrate("CS101-Student”);

Srlr;ar;Messages /* ask student to join */
eady Queue if (readTag("Joined"))
i++;
}
Cache Space migrate(“initiator");
Fig. 1. Node Architecture Fig. 2. Example of Smart Message Code

migrate("'CS101-Student'") migrate("'CS101-Student'")

on top of unmodified Java virtual machines. To evaluate this . .

runtime system, we have installed it on HP iPAQs running < P

Sun’s CVM virtual machine [4] on top of Linux. The testbed ‘%Q "’ig""’i""Q ration .

consists of wireless networks of HP iIPAQs equipped WithCSIoI—Student Not CSI01-Student  CS101—Student  Not CS101-Student  CS101-Student

802.11 cards. The experimental results show that the portableoined Not Joined Toined

SM implementation, although costlier than the original imple-

mentation in terms of execution time, is a feasible solution Fig. 3. Execution Path for the Smart Message Presented Above

for programming distributed applications over Java-enabled

cell-phones or PDAs. The results also show that the overhead

generated by the increase in Java bytecode size as a result dihe virtual machine (VM) offers a hardware abstraction

the bytecode instrumentation is negligible. layer for SM execution, which shields the SMs from het-
The rest of this paper is organized as follows. Sec@n grogeneous hardware platforms. The SM execution is non-

describes the SM distributed computing model. Secfioh Ireemptive; other SMs can be accepted, but they will not be

presents the design and implementation of the SM portal§lispatched for execution before the current SM completes.

runtime system. In Sectign ]V, we report experimental result§he execution time is bounded by the estimated running time

The related work is discussed in Sectjoh V, and the papeiesented during admission. The non-preemptive scheduling

migration

concludes in Sectiof V. simplifies the implementation of inter-SM synchronization and
sharing.
1. DISTRIBUTED COMPUTING WITH SMART MESSAGES The tag space is a hame-based shared memory, persistent

ross SM executions. It consists of a collection of tags,

A Smart Message (SM) is a user-defined application who&&" . :
execution is distributed over a series of nodes using executivg%mh essentially argname, datapairs used for data exchange

migration. The nodes on which SMs execute, caliedes of among SMs. Special I/O tags are used as an interface to the

: . . host OS and I/O system. These I/O tags can be used as an
interest are named by content and discovered dynamically us- . . .
. S . INterface to various services provided by nodes. Tags are also
ing application controlled routing. To move between two nOdeussed to name the destination of SM migrations as well as to
of interest, an SM calls explicitly for execution migration. AnStore routing information (routing tags)
SM consists otode bricksdata bricks(mobile data explicitly 9 9 1ags).
identified in the program), and execution control state (e.%,

instruction pointers,operand stackpointers). Code bricks are B- Smart Messages Example

destination. An SM can use its code and data bricks to cre@ihsider a network of PDAs belonging to students from the
new, possibly smaller SMs during execution. In this way, ahme university. At the beginning of each semester the students
application can eventually generate multiple SMs althoughdtwnload on their PDAs an SM that can do two actions: (1)
started as a single SM. creates a tag for each class the student is registered (e.g.,
CS101), and (2) helps the student set a group study meeting
with other students taking the same class. Using this SM,
The SM middleware architecture is totally decentralizegtudents need not call other people to set a group study
with nodes in the network acting as peers. SMs do not makeeeting, and even more, they need not know the people
any assumptions about the underlying network configuratiogistered for that class.
except for a minimal system support provided by nodes. TheEach time a student wants to set a meeting for a group study,
node architecture is presented in Hig. 1. she can inject an SM in the network from her PDA. The goal
The admission manager is responsible for receiving iof this SM is to migrate through the network until it findis
coming SMs, deciding whether or not to accept them, amtudents willing to have a group study for a certain class at a
storing them in theSM ready queueThe admission decision given location and time. Once the group is set, it returns and
is based on a list of resource estimates carried by the Sikforms the initiator. This SM is transferred between nodes
The admission manager instructs an accepted SM to tranafsing short-range wireless network interfaces. For instance,
only the missing code bricks (i.e., the code bricks that are reig.[d presents the code for an SM that creates a group study
stored in the locatode cachpand stores them in the cachefor CS101 Fig.[3 depicts the execution path of this SM over
upon reception. five nodes.

A. Node Architecture
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SMART MESSAGEAPI Arriva
[ Category [ Primitives ] ] Smart Messages I smart Message
createSMFromFiles(cod@es, databricks); ReadyOucue Migration
createSM(codéricks, databricks); Code
spawnSM(); Cache I

Smart Messages migrate(tagnames);

sysmigrate(); Local 70
blockSM(tagname, timeout); injector || Modified Virtual Machine || Tags

createTag(tagname, lifetime, data);

deleteTag(tagmame); Inf:;f:;’g ”
Tag Space readTag(tagname);
writeTag(tagname, data); Operating System & 1/0

Original SM Architecture

The key operation in the SM programming model is mi-
gration, which implements content-based routing using taqssmﬂiﬂvffimge
An SM names the nodes of interest by tags, and then calls [\ Manager —
migrate to route itself to a node that has the desired tags.
In our example migrate(“CS101-Student”youtes the SM to Code
students takingCS101using other PDAs (i.e., belonging to

Smart Message
Smart Messages Migration

Ready Queue
Application
Tags

|

students that do not takéS10) as intermediate nodes. After !
migration, the SM resumes from the next instruction following “ ‘ ST g ‘
nstrumenter nmodified Virtual Mach

the the migrate call. It is important to notice that migration is

e e . . e Locally
explicit (i.e., the programmer invokeswigrateprimitive when Injected SM
needed), and data transferred during a migration is specifi Operating System & 1/0 _
by the programmer as data bricks (i.e., in our case, the location Portable SM Architecture

and time for the meeting, as well as the variablesdN are
transferred as data bricks). Fig. 4. Comparison of the Two Smart Messages Architectures

C. Smart Messages API

The SM APl is presented in Talle I. To inject a new SM at processor; the VM inserts it into\aait queueassociated with
node, users invokereateSMFromFilesvith a list of program the tag. When the VM unblocks an SM, it removes that SM
file names and a list of data bricks. SMs can dynamicaltyom the wait queue and inserts it back in the SM ready queue.
create new, possibly smaller SMs by callimgeateSMor To prevent infinite blocking of SMshlockSMhas a timeout
spawnSMA createSMuses some of the SM’s code and datas parameter; if no write operation takes place within this
bricks to assemble a new SM and is commonly invoked timeout, the SM is unblocked.
build “children” SMs that cooperate with the “parent” SM.
An SM may clone itself usingpawnSM(similar to thefork Ill. PORTABLE SMART MESSAGES
system call in Unix). The original SM implementation was achieved by modify-

There are two functions for migrationmigrate and ing Sun’s Java KVM [3]. The whole architecture, presented
sysmigrate The migrate function is used by SMs to mi- in the upper part of Fig.]4, was implemented inside the VM
grate (over multiple hops) to nodes of interest named Mgcause of the need for VM support in capturing the execution
content. The programmers can choose among multiple librediate and restoring it at destination to resume the execution.
implementations ofigrate or they can implement their own This implementation, although powerful and efficient, is not
versions of this function. To reach these nodmsgrate im- portable. Since most of the new ubiquitous devices come with
plements content-based routing algorithms ussggmigrate a pre-installed Java VM (and most of the time users do not
and routing tagf] The sysmigrate primitive implements the want to modify the system software on their devices), we have
protocol for one-hop migration; it captures the execution stadé@signed and implemented a portable SM runtime system (i.e.,
and transfers the SM to the next hop. The VM at destinatidplemented completely in Java).
resumes the SM from the instruction followisysmigrate The main issue to be solved in a pure Java implementation

An SM can create, delete, or access application tags. TlRd10w to perform migration without having access to the VM
tags are accessed subject to authorization [6]. The same intafernals. Migration is the central part of the SM architecture,
face is used to access the 1/O tags: SMs can issue comma®id it involves capturing and restoring the execution state. The
to 1/0 devices by writing into 1/O tags, or can get I/O dat&xecution state, however, is located inside the VM and is not
by reading from 1/O tags (an SM cannot create or delete I/directly accessible to the external world.
tags). In order to provide migration without modifying the VM,

An SM can invokeblockSMto block on a tag until another We have designed a simple and efficient mechanism for

SM performs a write on that tag. A blocked SM yields théapturing and restoring the execution state by incorporating
all the necessary operations in the SM itself. The heart of

IMore details about the SM self-routing mechanism are presented in [Spur approach lies in instrumenting the SM bytecode in such



a way that the SM can save its state before migration and class A{

restore it before resumption with a minimal overhead. Using void  <init>{
this mechanism, the state is encoded in the code bricks and y
data bricks, and no explicit state information is shipped. ,
The lower part of FigiJ4 presents our pure Java architecture. Yo gt
Unlike the original architecture which was implemented inside inti=0
the VM (i.e., for efficiency), the architecture for portable SMs System-outprintin('hello”;
is implemented on top of the VM as a runtime system. Method2();
A. Migration Method30:
In the following, we present our migration mechanism, Method4();
which is generally applicable to any system based on exe- Migration.sys_migrate();

cution migration for Java programs. To migrate an SM, we
need to migrate its code bricks, data bricks, and execution
control state. The code bricks of SMs are Java class files, }
and data bricks are Java objects. We use the Java reflection
mechanism for loading the classes dynamically at the des-
tination node. The Java serialization mechanism is used to Fig. 5. Pseudo-code before Instrumentation
marshal/unmarshal the data bricks across migrations. Since
SMs do not use local variables across migrations (i.e., the
programmers have to include any data that they need acrba@cation, and hence, serves as a pointer to the boundaries
migrations in the data bricks), object deserialization worleetween code regions. At the time of resumption, the value
fine to restore the values of all objects and variables. TR&p[i] also serves as a pointer to the last statement executed
main problem that needs to be solved is how to Captui,réside theith method of the class. The last statement executed
and restore the execution control state (i.e., located insithside a critical method before a migration is always a critical
the VM), which consists of the instruction pointer and th&ethod invocation (i.e., either directly sysmigrate call or
method call stack. Our solution is to instrument the SNt chain of method invocations that ends witlsysmigrate).
bytecode in such a way that SMs can capture and restore thgis is the reason why incrementing the valueipffi] only
own runtime stack before resuming their normal execution heforecritical method invocations is sufficient. The value of
destination. There are numerous reasons for choosing bytecéitld can be used during resumption to locate the last method
transformation [7], [8] over source code transformation [9jnvocation made from methaidbefore migration. Since every
First, source code transformation does not provide fine-grain@@ject has a uniquép associated with itip is carried over as
control as provided by a bytecode transformation (e.g., tRePart of data bricks and restored during deserialization.
lack of goto statement in Java, the difficulty of instrumenting During resumption, each SM starts its execution from the
compound statements). Second, instrumenting a loop in soubgginning of therun() method of the main class (i.e., SMs
code requires the loop to be unfolded in order to preser@&ecute as Java threads). The instrumenter introducestah
correct execution semantics. Third, instrumenting the sourg@tement at the beginning of every critical method to redirect
code causes the corresponding bytecode to blow up, dhé instruction pointer, based on the valueigf], to the last
therefore, incurs heavy overheads. statement executed before migration. Hence, the code already
1) Bytecode Instrumentation for Capturing and Restoringxecuted is skipped. For every method other than the one that
the Execution Control StateWe introduce the terncritical directly invokedsys_migrate, this will result in an invocation
methodto refer to any method that can directly or indirectlyof the method that was adjacent to this method in the runtime
invoke sysmigrate or blockSM These two methods are thestack before migration. As a consequence, the runtime stack
only methods that can lead to capturing and restoring tife re-created. Thep[i] of the method that directly invoked
execution control state. Therefore, only critical methods neegs-migrate serves as a pointer to the statement immediately
to be instrumented. Since a migration (or block) happens at fiedowing the sys_migrate call.
end of a method call chain, the instrumenter has to detect allAn SM is said to be iresumption modevhen it is recre-
the methods from whickysmigrate (or blockSM is statically ating the runtime stack. To differentiate betweesumption
reachable in order to recognize critical methods. To simplifpode and normal executionthe instrumenter adds a global
the exposition throughout this section, we will refer only télag: resumption. This flag is important for preserving the
migration. correct execution semantics. Its purpose is to activate or
Our bytecode instrumenter adds an integer aifgl¢ngth] deactivate thewitchstatement introduced by the instrumenter
to every class, wheréength is the number of methods in at the beginning of each critical method depending on whether
that class. An elemenip[i] is is used as a pseudo instructiothe SM is undergoing normal execution or is in resumption
pointer for theith method. The code of a critical methodmode. If the SM is resuming, it is necessary to execute the
is divided into code regionsseparated by critical methodswitch statement in order to skip the already executed code.
invocations. A critical method invocation marks the end df the SM is undergoing normal execution, it is necessary to
a code region and the beginning of another new code regi@gnore the value ofp[i] to ensure that a method invocation
The value ofip[i] is incremented only before a critical methods not influenced by this value (i.eip[{] might be non-

%égSpace.bIockSM();




class X{ class Y{ class Z{
clas’smﬁﬁc il i Yy: 77; void Method2(){
void <init>{ ’ void run(){ void Method1(){
ipll = new int[5];

) ip = Migration.sys_migrate();
y =new Y(); z =new Z();
ip = y.Method1(); ip = z.Method2(); }

}
void Method1(){
int j = 0; }
inti =0
If(s'\gvﬁilﬁ?ppﬁ%? true){ } Migration Snapshot
case 0: goto label 0;
case 1: goto label 1; class X{ class Y{
case 2: goto label 2;

} }

class Z{

void Method2(){

case 3: goto label 3; void void Method1(){ fetho
case 4: goto label 4; ol srwu?l(c)h{(ip) switch(ip) switch(ip)
Jelse{ ;:MelhodZ()‘ Migration.sys_migrate();

ip[1] = ©O; ;:Methodl();

}
label 0 : System.out.printin("Hello"); \ } } } }

Resumption

ip[L]++;
label 1 : Method2();

Fig. 7. Example of Resuming the Execution after Migration
Method3();

ip[L]++;
label 2:  Method4(); . . . .
before every invocation to a critical method. For instance,

',\%]r;é,n,sys_migrateo; ip[1] is incremented before an invocation fdethod2, but
label 3: SM.resumption = false; not before an invocation td/ethod3 which is not a critical
ip[1}++; method. This example also shows how theumption flag
label 4 SMrcoumton < Al is used. If the flag is set tfalse the execution of the methods
o ' starts from the beginning. Otherwise, it starts with the code
} region pointed to byip[1]. As soon as the SM recreates the

stack, theresumption flag is reset by the SM itself. This
ensures that any future invocation ddethodl or any other
Fig. 6. Pseudo-code after Instrumentation critical method will not be affected by the value of. Note
that resumption flag is local to an SM, but global to all the
classes that constitute that SM.

zero due to an earlier invocation of the same method). TheSupposeMethodl had calledsys_migrate before migra-
resumption flag of the SM is set by the system before théion, the value ofip[1] would be 3. When the SM resumes
SM is migrated or blocked and reset by the SM itself onagxecution at the destination node and entkfsthodl, the
the SM has reconstructed the method call stack, at whigtstruction pointer would be redirected kabel 3 by virtue of
point normal executionof the SM begins. To achieve this,the switch statement; from this point omormal execution
the resumption flag is reset after every statement containingf the SM begins. If on the other hand ethod4 had called
a call to sys_migrate. sys_migrate, then the value ofp[1] would be 2. When the

Fig. [ and[§ illustrate the transformation done by th8M entersMethodl after resuming at the destination node,
bytecode instrumenter. Although the transformation is done thre instruction pointer would be redirected label 2 which
the bytecode, for the sake of simplicity, we show a higher levebntains a call toMethod4, thereby skipping the already
transformation on the corresponding Java pseudo-code. In #xecuted code id/ethodl and recreating the runtime stack.
exampleclassA has four methods, excluding the constructor. Fig.[7 briefly demonstrates the working of our instrumen-
Let us assume that/ethodl, Method2, and Method4 are tation scheme. The upper part of the figure gives a pictorial
critical methods (i.e., they can directly or indirectly invokeview of ip in three critical methods at the time of migration.
sys-migrate or blockSM), while Method3 is not a critical The arrows in the lower part of the figure show the control
method. We present the bytecode instrumentation only filow of the SM from the time of execution resumption at the
Methodl, but similar transformations take place on the othefestination until the method stack is recreated.
critical methods {/ethod2 and M ethod4 in this case) as well.  2) Bytecode Instrumentation for Suspending a Smart Mes-
As Method3 according to our assumption is not a criticakage: In the original SM implementation, SMs were VM-
method, it is not instrumented. level threads controlled internally by the VM. In the current

SinceclassA has five methods including the constructipr, implementation, SMs are Java threads, and therefore, the
is declared as an array of length five. We initialize this arragontrol over SMs is theoretically limited to the amount of
in the <init> method which is internal to the bytecode and isontrol offered by the Java Thread API. When an SM migrates
invoked every time a new object of the class is created. Given blocks on a tag, the corresponding Java thread has to be
that Methodl has four invocations to critical methods (twostopped. Thestop() method of the Jav& hread class has
indirect, and two direct), its code is divided into five coddeen deprecated as it was deadlock-prone. In the absence of
regions labeled from 0 to 4. The value @f1] is incremented a direct way of stopping a Java thread, we have used the Java




TABLE I

exception mechanism and bytecode transformations.
INCREASE INBYTECODE SIZE DUE TO INSTRUMENTATION

For eachsys_migrate or blockSM call, aStopException

(a class that extends the RuntimeException) is thrown. To Unmodified Modified
ensure that this exception is not caught until it reaches the Bytecode(KB) Bytecode(KB)
bottom of the stack, everyry-catch block is instrumented iggg ﬁgg
to re-throw the StopEzception if it happens to catch it. 1230 1566
We ensure that theun() method has a try-catch block that 1527 1564

catches this exception and consequently finishes the thread’s
execution. Using a RuntimeException instead of a regular
Exception has the advantage that the method signatures

advanta 9%s). If th local variable |
not have to be modified to includethrows clause. b I% s)- If the programmer wants to use a local variable in two

or more code regions, the local variable should be declared and
B. Tag Space initialized before the beginning of the first code region of that
ggethod. This is necessary to satisfy the bytecode verifier.

of tags: application tags and I/O tags. Since the implementa-The_“ghtweight instru_mentation s_cheme does not support
tion of I/O tags is platform dependent, the portable runtim&CUrSIon across migrations; recursion, however, can be used
system implements only application tags. These tags are jlggally. Our instrumentation scheme relies on the assumption

objects which can be created, deleted, read from, or writtg?f"t only one instance of a method is present inside the runtime
into by SMs. stack at the time of migration. It should be noted, however,

An SM can also block on a tag for a certain period 0tpat lack of local variables or recursion across migrations does

time. To implement a timeout mechanism, we use Javadt compromise the programming mod_el at all. .
built-in scheduler (i.e., provided by thScheduler class), _ /O 18gs imply coupling the SM runtime system with the
which makes the SM ready for scheduling after the timeofS: In order to make SMs portable, we had to eliminate these
Using Java'sScheduler class avoids a polling timer thread!@9S: The result is a loss of power in the new model, but it
that would otherwise be required to implement the timeoGRN P& compensated by various profiles and JSRs provided by
mechanism. Commonly, a blocked SM is woken up by tth_E [3] for mtergctlng with the O_S or th_e net\_/vork. These
interpreter when the tag is written by another SM. Each tinRi0files/JSRs provide Java AP for interacting with the OS or
an SM blocks on a tag, its corresponding Java thread the petwork, thereby hldlng. the und.erlymg implementation.
terminated through the thread stopping mechanism descritfédi instance, the MIDP profile [10] hides the network proto-
in [T-A.2] Each time an SM is unblocked (and consequentl?ﬁ's from the_user, proyldes a generic method.of conneptmg
dispatched for execution), a new Java thread is created forf{th other devices, and is able to store data persistently without
referring to the file system. Another example is the Bluetooth
C. Code Cache API (JSR 82) which allows connectivity through Bluetooth.
We exploit Java’s classloader to implement the code cacheThe security issues related to the SM architecture are
The Java reflection mechanism is used to load a class reg¥eesented in [6]. Our current implementation does not address
senting a code brick. In the process, a n€luss instance these issues. We are in the process of converging upon the cor-
of the corresponding class is created. The classloader will i€t approach for dealing with the security issues that come as
unload the class as long as there is a live reference to th@yproduct of designing a middleware for mobile agents and
Class instance. References to the cached classes are stdfgile ad-hoc networks. For cell-phones, which have GPRS
such that these classes are not unloaded by the classloagnectivity in addition to short-range wireless connectivity,
When the caching policy chooses a class for eviction, we ju€ code could be downloaded from a trusted server and stored
remove the stored reference for that class. in the code cache either statically or dynamically. This adds
a level of security because it avoids fetching code from an
D. Scheduler untrusted peer.
The SM scheduldf is implemented as a Java thread that
extracts an SM from the ready queue in FIFO order, dispatches IV. EVALUATION
it for execution as a Java thread, and goes to sleep. When thgyyr goals in conducting the experimental evaluation for
SM completes its execution, |t_wakes up t.he scheduler usify portable SMs were three-fold: (1) quantify the impact
the Java's thread synchronization mechanism. of bytecode instrumentation on the SM size, (2) compare
the costs for the basic SM operations between our portable
rchitecture and the original SM architecture, and (3) execute a
imple application over both architectures in order to compare

As mentioned in Sectidn]ll, the tag space contains two typ

E. Limitations

As in the traditional SM architecture, the portable S
architecture does not allow the use of local variables acr completion time.

migrations (they can be used locally, though). Consequently, ANe use Soot1.2.5 [11] to do the off-line bytecode instrumen-

local variable cannot occur in two different code regions. Al[l tion. Table[T| shows the increase in the bytecode size as a

the variables that need to be used across migrations have tg Qult of instrumenting four of our SM test cases. On average,

declared as global variables (i.e., they become part of the dﬁ}g observe an increase of 2.9% in the bytecode size which

2Note that the SM scheduler is a component of the SM architecture and%neg“g'ble compared to existing approaches (see S@mn v
different from Java’s built-in scheduler mentioned[in T]|-B. for details).



TABLE Il TABLE V

EFFECT OFCODE BRICK SIZE ON SINGLE-HOP ROUND-TRIP TIME COST OFTAG SPACE OPERATIONS
Round Trip Time(ms) Operation Time(us)

Size(Bytes) Portable SM Architecturg Original SM Architecture Portable SM Architecturg] Original SM Architecture

Uncached]  Cached Uncached]  Cached readTag 78 21
1430 114 124 50 23 createTag 89 43
2322 126 124 56 23 writeTag 71 32
3456 150 124 63 23 deleteTag 98 56
4454 155 124 69 23
8510 165 124 91 23

TABLE VI

TABLE IV COMPLETION TIME FOR THE Student Group Stud§PPLICATION, VARYING

THE NUMBER OF STUDENTS, N, FROM1TO 5
EFFECT OFDATA BRICK SIZE ON SINGLE-HOP ROUND-TRIP TIME

—— Completion Time(ms)

Size(Bytes) Round Trip Time(ms) Portable SM Architecturd Original SM Architecture
— Portable SlI\;Archltecture{ Original Sl\ggArchltecture N Uncached| Cached Uncached|  Cached
2056 196 38 1 4527 4093 1284 1102
8010 >34 57 2 5212 5031 1944 1783
16010 301 88 3 5604 5308 2036 1968

4 6358 6012 2157 1985

5 7863 6339 2198 2148

We have tested the portable SMs on J2ME CDC platform

Wh'C.h uses CVM as the virtual machine. CDC's Person- e code is cached. We consider this time reasonable for
Profile is the upcoming replacement for Personal Java whi bile ad hoc networks composed of resource constrained

IS clurrentlty tgsed flrélge(::ll’—pgonej. tW © Bavﬁ us?:.j Lh.e referelg‘&/ices_ The effect of code cache is not very significant for this
impiementation o S Foundation Frofile which 1S upwar plication because of the unavoidable contention encountered

compatible with both Personal Profile and Personal Ja\( ‘wireless networks, coupled with our on-demand content-
Foundation Profile is widely used on PDAs. Our testb

. . . . : - ased routing which involves many broadcast messages in the
consists of HP iPAQs running Linux. Each iPAQ containg .y vork

a StrongARM 206MHz processor, 32MB flash memory, and To summarize our results, we have found out that our

641'\_/; iIeRSAM. ;nor Corggnmun:s'?ﬁeviistsﬁfsrg_z':;tboscbeiarg:i‘mplementation performs approximately 2 to 3.7 times slower
{1 and Ty P gral W an the original implementation. We believe that the main

the portable SM arch_|tepture and _the original arCh'.teC.turFeason is the fact that we use an un-optimized virtual machine

Table[TT] shows the variation of the single-hop round-trip imey, 2 o\ based on x86/PC Linux development), while the

Lo_r Iim .SM. as al.fu.EICt'(.)n tﬁf the co_de bt”CIfl_ sizé I\(}hehdat iginal implementation uses a virtual machine (Java KVM)
rick size is negligible in this experiment). Talfle] IV show esigned specifically for resource constrained devices. To

the variation of the single-hop round-trip time of an SM ag . .
. . . uantify the impact of the VM, we plan to run our prototype
the size of data bricks varies from 2KB to 16KB (the cod n the optimized, commercially available CVM. Such an

brick size constant at 3.51KB). Talfig V shows the cost of ta&periment will help us evaluate more accurately the cost of

space operations. %ortability (i.e., the cost of implementing the SM architecture

thifs éﬁsltsoi]ogeznténgﬁﬂassi Igcﬂ;gde)éeg:nt?]g tgpe.na a runtime system on top of unmodified Java VM versus the
p p xecu v 19N st of implementing it within the VM).

architecture. However, this is the price paid for the ability to
inject a new distributed application anytime, anywhere on a
Java-enabled device without modifying the system software.
Note that these results have been obtained using the referendemart Messages (SMs) share the idea of code migration
implementation of CDC’s Foundation Profile which is muchvith mobile agents [12], [13], and active networks [14], [15].
slower than the commercial version which has been optimizedSimilar to a mobile agent, an SM may be viewed as a task
for different platforms. We believe that significantly bettethat explicitly migrates from node to node and executes on
results could be obtained by using the commercial version.nodes of interest. Unlike mobile agents, SMs are defined to
We have implemented and evaluated tBwdent Study be responsible for their own routing in a network. This feature
Group application described in Sectidn] Il. Tadle]VI showsillows SMs to adapt quickly to changes that may occur both in
the time taken to findN students for a group study and returrthe network topology and the availability of resources at nodes.
to the initiator. We have executed this application over an @#lmobile agent names nodes by fixed addresses and commonly
hoc network consisting of 8 HP iPAQs, while varyihgfrom  knows the network configuration a priori, while an SM names
1 to 5 (the nodes of interest have been distributed uniformly irodes by content and discovers the network configuration
the network). The results indicate that our architecture yieldsignamically. Furthermore, the SM system architecture defines
completion time greater by as much as 3.7 times. The absolat@ode architecture suitable for resource constrained devices.
numbers, however, demonstrate that the SM over the portabl&Ms differ from active networks (AN) in several key
architecture can still complete between 4.09s and 6.33s wifeatures. A first difference comes from the problems they

V. RELATED WORK



try to solve: AN target improved performance for end-toseparate scheduler has been implemented. Although expensive,
end data transfers in relatively stable networks, while SMkis approach works well for multi-threaded environments.
help the development of distributed applications on top of a The main difference between our approach and the above
new computing infrastructure which is significantly under-usedentioned bytecode transformation approaches is that we
due to the lack of programmability support. Unlike AN, wamanage to capture and restore execution state without iterating
define a computing model whereby several SMs can cooperdtepugh the runtime stack and creatinigite objects for every
exchange data, and synchronize with each other through thethod instance on the stack. By assuming no use of recursion
tag space. In terms of migration, AN do not transfer thand local variables across migrations, we have been able to
execution state from node to node whereas the SM modiise a lightweight migration approach suitable for embedded
does. systems, without compromising the programming model.

To implement execution migration (i.e., transfer of the VI. CONCLUSIONS
execution state), two approaches can be used: VM-based orh ibut £ thi . fold. Fi h
compiler-based. The first approach implies designing new 'N€ contribution of this paper is two-fold. First, we have

VMs or modifying existing ones to support the capturin resented a portable middleware architecture for ubiquitous
and restoring of the execution state. The second appro§ a-enabled devices which opens up many possibilities for

works for unmodified VMs, but it involves either a modified'Ser-defined distributed applications over ad hoc networks
compiler, or other tools that insert new pieces of code in tf@MPosed of cell-phones or PDAs. Second, we have presented

source code or directly in the executable program in order folgNtweight execution migration mechanism. The experi-
capture and restore the execution state. In the following, W&ENtS conducted over a mobile ad hoc network demonstrate
discuss several systems that transfer the execution statetlﬂ?r feasibility of our approach.
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