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Abstract— Recent advances in wireless technology allow Java-
enabled devices, such as cell-phones and PDAs, to create mobile
ad hoc networks, over which distributed applications can be
executed. Although Java shields the programmers from the
heterogeneity of the hardware platforms, a common middleware
architecture is needed to support a cooperative execution envi-
ronment in these networks.

In this paper, we present a portable runtime system for
Smart Messages (SMs), a middleware architecture based on
execution migration, that we designed and implemented on top
of an unmodified Java virtual machine. An SM is a user-defined
distributed application which executes on nodes of interest named
by properties and uses explicit migration to move between these
nodes. The main benefits provided by SMs are adaptability to
highly dynamic network conditions and ease of deployment for
new applications in the network. To make use of the resources
at nodes efficiently, we have designed a lightweight migration
mechanism suitable for mobile ad hoc networks where limited
bandwidth and mobility impose constraints on the amount of data
that can be transferred. This migration mechanism is based on
Java bytecode instrumentation, and it is the key to making the
system portable to any Java-enabled device. The experimental
results for applications executed over a testbed consisting of HP
iPAQs communicating through 802.11 wireless cards demonstrate
the feasibility of our portable runtime system.

I. I NTRODUCTION

Recently, we have been witnessing a significant growth in
the number of Java-enabled wireless devices [1]. Benefiting
from a strong support from industry, cell-phones and PDAs
are the most representative Java-enabled devices currently
available on the market. These devices are mostly used for
local computations or downloading data from web servers
and personal computers. Since these devices are equipped
with short-range wireless network interfaces (e.g., 802.11,
Bluetooth), they can create mobile ad hoc networks which
can be programmed to execute distributed applications.

For instance, a person may use a program installed on
her cell-phone to book a free cab which is a part of a
network of wireless-enabled cabs. Other examples include
drivers inquiring other cars about the traffic conditions on
particular routes, customers paying their bills in restaurants
using their PDAs, or peer-to-peer games among ad hoc groups
of students in a campus. The lack of a common execution
environment, however, precludes the development of such
distributed applications on top of mobile ad hoc networks of
Java-enabled devices. Although Java shields the programmers
from the heterogeneity of the hardware platforms, a simple
and flexible middleware architecture is needed to support a
cooperative execution environment in these networks.

In this paper, we present a portable runtime system for
Smart Messages (SMs) [2], a middleware architecture based
on execution migration, that we designed and implemented
on top of an unmodified Java virtual machine. An SM is a

user-defined distributed application which executes on nodes
of interest named by properties and uses explicit execution
migration to move between these nodes. Each node has a
virtual machine for SM execution and a name-based memory,
called tag space. The SMs use the tag space for content-based
naming and persistent shared memory. An SM carries the
routing code and routes itself at each node in the path toward
a node of interest. The SM middleware architecture achieves
flexibility in networks of resource constrained devices by
letting the applications dynamically discover nodes providing
services or content of interest.

SMs represent an attractive alternative to traditional dis-
tributed computing based on end-to-end data transfers in
mobile ad hoc networks for two main reasons. First, SMs can
adapt to highly dynamic network configurations by instructing
the routing code to return the control to application when the
network conditions change. Since its execution state is already
at the same node, the SM can quickly adapt to these changes.
Second, SMs simplify the deployment of new applications in
ad hoc networks. A user can inject SMs at any node in the
network, and consequently the SMs can migrate their code to
any node that does not have it.

The original implementation of the SM middleware ar-
chitecture was based on a modified Java virtual machine
(Sun’s KVM [3]). Having access to the virtual machine (VM)
source code, we were able to implement an efficient migration
mechanism. Additionally, the entire software needed for SM
execution at nodes was implemented inside the VM to improve
the overall performance of the system. This implementation,
although powerful and efficient, is not portable. Since most of
the new ubiquitous devices come with a pre-installed Java VM
(and most of the time users do not want to modify the system
software on their devices), it would be beneficial to have the
SMs running over a portable runtime system implemented on
top of an unmodified VM.

The main issue to be dealt with in a pure Java middleware
architecture is how to perform migration without having access
to the VM internals. The execution state is located inside
the VM and is not directly accessible to the external world.
To implement a portable runtime system that runs on top
of any Java VM (i.e., pure Java code), we have designed a
migration approach based on Java bytecode instrumentation.
This approach is also well suited for mobile ad hoc networks
where limited bandwidth and mobility impose constraints on
the amount of data that can be transferred. It offers a general
mechanism that can be applied to other systems based on
execution migration for Java programs.

We have developed a prototype implementation, where
all the components of the SM middleware architecture are
implemented within a portable runtime system that can run
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on top of unmodified Java virtual machines. To evaluate this
runtime system, we have installed it on HP iPAQs running
Sun’s CVM virtual machine [4] on top of Linux. The testbed
consists of wireless networks of HP iPAQs equipped with
802.11 cards. The experimental results show that the portable
SM implementation, although costlier than the original imple-
mentation in terms of execution time, is a feasible solution
for programming distributed applications over Java-enabled
cell-phones or PDAs. The results also show that the overhead
generated by the increase in Java bytecode size as a result of
the bytecode instrumentation is negligible.

The rest of this paper is organized as follows. Section II
describes the SM distributed computing model. Section III
presents the design and implementation of the SM portable
runtime system. In Section IV, we report experimental results.
The related work is discussed in Section V, and the paper
concludes in Section VI.

II. D ISTRIBUTED COMPUTING WITH SMART MESSAGES

A Smart Message (SM) is a user-defined application whose
execution is distributed over a series of nodes using execution
migration. The nodes on which SMs execute, callednodes of
interest, are named by content and discovered dynamically us-
ing application controlled routing. To move between two nodes
of interest, an SM calls explicitly for execution migration. An
SM consists ofcode bricks, data bricks(mobile data explicitly
identified in the program), and execution control state (e.g.,
instructionpointers,operand stackpointers). Code bricks are
transferred with SMs only if the code is not cached at the
destination. An SM can use its code and data bricks to create
new, possibly smaller SMs during execution. In this way, an
application can eventually generate multiple SMs although it
started as a single SM.

A. Node Architecture

The SM middleware architecture is totally decentralized,
with nodes in the network acting as peers. SMs do not make
any assumptions about the underlying network configuration,
except for a minimal system support provided by nodes. The
node architecture is presented in Fig. 1.

The admission manager is responsible for receiving in-
coming SMs, deciding whether or not to accept them, and
storing them in theSM ready queue. The admission decision
is based on a list of resource estimates carried by the SM.
The admission manager instructs an accepted SM to transfer
only the missing code bricks (i.e., the code bricks that are not
stored in the localcode cache) and stores them in the cache
upon reception.

i=0;
while(i<N){

migrate("CS101-Student");
/* ask student to join */
if (readTag("Joined"))

i++;
}
migrate("initiator");

Fig. 2. Example of Smart Message Code
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The virtual machine (VM) offers a hardware abstraction
layer for SM execution, which shields the SMs from het-
erogeneous hardware platforms. The SM execution is non-
preemptive; other SMs can be accepted, but they will not be
dispatched for execution before the current SM completes.
The execution time is bounded by the estimated running time
presented during admission. The non-preemptive scheduling
simplifies the implementation of inter-SM synchronization and
sharing.

The tag space is a name-based shared memory, persistent
across SM executions. It consists of a collection of tags,
which essentially are(name, data)pairs used for data exchange
among SMs. Special I/O tags are used as an interface to the
host OS and I/O system. These I/O tags can be used as an
interface to various services provided by nodes. Tags are also
used to name the destination of SM migrations as well as to
store routing information (routing tags).

B. Smart Messages Example

To illustrate the SM distributed computing model, let us
consider a network of PDAs belonging to students from the
same university. At the beginning of each semester the students
download on their PDAs an SM that can do two actions: (1)
creates a tag for each class the student is registered (e.g.,
CS101), and (2) helps the student set a group study meeting
with other students taking the same class. Using this SM,
students need not call other people to set a group study
meeting, and even more, they need not know the people
registered for that class.

Each time a student wants to set a meeting for a group study,
she can inject an SM in the network from her PDA. The goal
of this SM is to migrate through the network until it findsN
students willing to have a group study for a certain class at a
given location and time. Once the group is set, it returns and
informs the initiator. This SM is transferred between nodes
using short-range wireless network interfaces. For instance,
Fig. 2 presents the code for an SM that creates a group study
for CS101. Fig. 3 depicts the execution path of this SM over
five nodes.



TABLE I

SMART MESSAGEAPI

Category Primitives
createSMFromFiles(codefiles, databricks);
createSM(codebricks, databricks);
spawnSM();

Smart Messages migrate(tagnames);
sysmigrate();
blockSM(tagname, timeout);
createTag(tagname, lifetime, data);
deleteTag(tagname);

Tag Space readTag(tagname);
writeTag(tagname, data);

The key operation in the SM programming model is mi-
gration, which implements content-based routing using tags.
An SM names the nodes of interest by tags, and then calls
migrate to route itself to a node that has the desired tags.
In our example,migrate(“CS101-Student”)routes the SM to
students takingCS101using other PDAs (i.e., belonging to
students that do not takeCS101) as intermediate nodes. After
migration, the SM resumes from the next instruction following
the the migrate call. It is important to notice that migration is
explicit (i.e., the programmer invokes amigrateprimitive when
needed), and data transferred during a migration is specified
by the programmer as data bricks (i.e., in our case, the location
and time for the meeting, as well as the variablesi andN are
transferred as data bricks).

C. Smart Messages API

The SM API is presented in Table I. To inject a new SM at a
node, users invokecreateSMFromFileswith a list of program
file names and a list of data bricks. SMs can dynamically
create new, possibly smaller SMs by callingcreateSMor
spawnSM. A createSMuses some of the SM’s code and data
bricks to assemble a new SM and is commonly invoked to
build “children” SMs that cooperate with the “parent” SM.
An SM may clone itself usingspawnSM(similar to thefork
system call in Unix).

There are two functions for migration:migrate, and
sysmigrate. The migrate function is used by SMs to mi-
grate (over multiple hops) to nodes of interest named by
content. The programmers can choose among multiple library
implementations ofmigrate, or they can implement their own
versions of this function. To reach these nodes,migrate im-
plements content-based routing algorithms usingsysmigrate
and routing tags1. The sysmigrateprimitive implements the
protocol for one-hop migration; it captures the execution state
and transfers the SM to the next hop. The VM at destination
resumes the SM from the instruction followingsysmigrate.

An SM can create, delete, or access application tags. The
tags are accessed subject to authorization [6]. The same inter-
face is used to access the I/O tags: SMs can issue commands
to I/O devices by writing into I/O tags, or can get I/O data
by reading from I/O tags (an SM cannot create or delete I/O
tags).

An SM can invokeblockSMto block on a tag until another
SM performs a write on that tag. A blocked SM yields the

1More details about the SM self-routing mechanism are presented in [5]
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processor; the VM inserts it into await queueassociated with
the tag. When the VM unblocks an SM, it removes that SM
from the wait queue and inserts it back in the SM ready queue.
To prevent infinite blocking of SMs,blockSMhas a timeout
as parameter; if no write operation takes place within this
timeout, the SM is unblocked.

III. PORTABLE SMART MESSAGES

The original SM implementation was achieved by modify-
ing Sun’s Java KVM [3]. The whole architecture, presented
in the upper part of Fig. 4, was implemented inside the VM
because of the need for VM support in capturing the execution
state and restoring it at destination to resume the execution.
This implementation, although powerful and efficient, is not
portable. Since most of the new ubiquitous devices come with
a pre-installed Java VM (and most of the time users do not
want to modify the system software on their devices), we have
designed and implemented a portable SM runtime system (i.e.,
implemented completely in Java).

The main issue to be solved in a pure Java implementation
is how to perform migration without having access to the VM
internals. Migration is the central part of the SM architecture,
and it involves capturing and restoring the execution state. The
execution state, however, is located inside the VM and is not
directly accessible to the external world.

In order to provide migration without modifying the VM,
we have designed a simple and efficient mechanism for
capturing and restoring the execution state by incorporating
all the necessary operations in the SM itself. The heart of
our approach lies in instrumenting the SM bytecode in such



a way that the SM can save its state before migration and
restore it before resumption with a minimal overhead. Using
this mechanism, the state is encoded in the code bricks and
data bricks, and no explicit state information is shipped.

The lower part of Fig. 4 presents our pure Java architecture.
Unlike the original architecture which was implemented inside
the VM (i.e., for efficiency), the architecture for portable SMs
is implemented on top of the VM as a runtime system.

A. Migration

In the following, we present our migration mechanism,
which is generally applicable to any system based on exe-
cution migration for Java programs. To migrate an SM, we
need to migrate its code bricks, data bricks, and execution
control state. The code bricks of SMs are Java class files,
and data bricks are Java objects. We use the Java reflection
mechanism for loading the classes dynamically at the des-
tination node. The Java serialization mechanism is used to
marshal/unmarshal the data bricks across migrations. Since
SMs do not use local variables across migrations (i.e., the
programmers have to include any data that they need across
migrations in the data bricks), object deserialization works
fine to restore the values of all objects and variables. The
main problem that needs to be solved is how to capture
and restore the execution control state (i.e., located inside
the VM), which consists of the instruction pointer and the
method call stack. Our solution is to instrument the SM
bytecode in such a way that SMs can capture and restore their
own runtime stack before resuming their normal execution at
destination. There are numerous reasons for choosing bytecode
transformation [7], [8] over source code transformation [9].
First, source code transformation does not provide fine-grained
control as provided by a bytecode transformation (e.g., the
lack of goto statement in Java, the difficulty of instrumenting
compound statements). Second, instrumenting a loop in source
code requires the loop to be unfolded in order to preserve
correct execution semantics. Third, instrumenting the source
code causes the corresponding bytecode to blow up, and
therefore, incurs heavy overheads.

1) Bytecode Instrumentation for Capturing and Restoring
the Execution Control State:We introduce the termcritical
methodto refer to any method that can directly or indirectly
invoke sysmigrate or blockSM. These two methods are the
only methods that can lead to capturing and restoring the
execution control state. Therefore, only critical methods need
to be instrumented. Since a migration (or block) happens at the
end of a method call chain, the instrumenter has to detect all
the methods from whichsysmigrate(or blockSM) is statically
reachable in order to recognize critical methods. To simplify
the exposition throughout this section, we will refer only to
migration.

Our bytecode instrumenter adds an integer arrayip[length]
to every class, wherelength is the number of methods in
that class. An elementip[i] is is used as a pseudo instruction
pointer for theith method. The code of a critical method
is divided into code regionsseparated by critical method
invocations. A critical method invocation marks the end of
a code region and the beginning of another new code region.
The value ofip[i] is incremented only before a critical method

class A{
void <init>{

...
}

void Method1(){
int j = 0;
int i = 0;
System.out.println("hello");
...
Method2();
...
Method3();
...
Method4();
...
Migration.sys_migrate();
...
TagSpace.blockSM();
...

}
}

Fig. 5. Pseudo-code before Instrumentation

invocation, and hence, serves as a pointer to the boundaries
between code regions. At the time of resumption, the value
of ip[i] also serves as a pointer to the last statement executed
inside theith method of the class. The last statement executed
inside a critical method before a migration is always a critical
method invocation (i.e., either directly asysmigrate call or
a chain of method invocations that ends with asysmigrate).
This is the reason why incrementing the value ofip[i] only
beforecritical method invocations is sufficient. The value of
ip[i] can be used during resumption to locate the last method
invocation made from methodi before migration. Since every
object has a uniqueip associated with it,ip is carried over as
a part of data bricks and restored during deserialization.

During resumption, each SM starts its execution from the
beginning of therun() method of the main class (i.e., SMs
execute as Java threads). The instrumenter introduces aswitch
statement at the beginning of every critical method to redirect
the instruction pointer, based on the value ofip[i], to the last
statement executed before migration. Hence, the code already
executed is skipped. For every method other than the one that
directly invokedsys migrate, this will result in an invocation
of the method that was adjacent to this method in the runtime
stack before migration. As a consequence, the runtime stack
is re-created. Theip[i] of the method that directly invoked
sys migrate serves as a pointer to the statement immediately
following the sys migrate call.

An SM is said to be inresumption modewhen it is recre-
ating the runtime stack. To differentiate betweenresumption
modeand normal execution, the instrumenter adds a global
flag: resumption. This flag is important for preserving the
correct execution semantics. Its purpose is to activate or
deactivate theswitchstatement introduced by the instrumenter
at the beginning of each critical method depending on whether
the SM is undergoing normal execution or is in resumption
mode. If the SM is resuming, it is necessary to execute the
switch statement in order to skip the already executed code.
If the SM is undergoing normal execution, it is necessary to
ignore the value ofip[i] to ensure that a method invocation
is not influenced by this value (i.e.,ip[i] might be non-



class A{
public int[] ip;
void <init>{

ip[] = new int[5];
...

}
void Method1(){

int j = 0;
int i = 0;
if(SM.resumption == true){

switch(ip[1]){
case 0: goto label 0;
case 1: goto label 1;
case 2: goto label 2;
case 3: goto label 3;
case 4: goto label 4;

}
}else{

ip[1] = 0;
}
label 0 : System.out.println("Hello");

...
ip[1]++;

label 1 : Method2();
...
Method3();
...
ip[1]++;

label 2: Method4();
...
ip[1]++;
Migration.sys_migrate();

label 3: SM.resumption = false;
...
ip[1]++;
TagSpace.blockSM();

label 4: SM.resumption = false;
...

}
}

Fig. 6. Pseudo-code after Instrumentation

zero due to an earlier invocation of the same method). The
resumption flag of the SM is set by the system before the
SM is migrated or blocked and reset by the SM itself once
the SM has reconstructed the method call stack, at which
point normal executionof the SM begins. To achieve this,
the resumption flag is reset after every statement containing
a call tosys migrate.

Fig. 5 and 6 illustrate the transformation done by the
bytecode instrumenter. Although the transformation is done on
the bytecode, for the sake of simplicity, we show a higher level
transformation on the corresponding Java pseudo-code. In the
example,classA has four methods, excluding the constructor.
Let us assume thatMethod1, Method2, and Method4 are
critical methods (i.e., they can directly or indirectly invoke
sys migrate or blockSM ), while Method3 is not a critical
method. We present the bytecode instrumentation only for
Method1, but similar transformations take place on the other
critical methods (Method2 andMethod4 in this case) as well.
As Method3 according to our assumption is not a critical
method, it is not instrumented.

SinceclassA has five methods including the constructor,ip
is declared as an array of length five. We initialize this array
in the<init> method which is internal to the bytecode and is
invoked every time a new object of the class is created. Given
that Method1 has four invocations to critical methods (two
indirect, and two direct), its code is divided into five code
regions labeled from 0 to 4. The value ofip[1] is incremented

class X{
   Y y;
   void run(){

....
y = new Y();
y.Method1();
....

}
....

 }

class Y{
   Z z;
   void Method1(){
       ....
       z = new Z();
       z.Method2();
       ....
   }
  ....
}

class Z{
    void Method2(){
        ....
        Migration.sys_migrate();
        ....
    }
    ....
}

ip ip

ip

class X{
....

   void run(){
switch(ip)

 }
}

....
y.Method1();
....

class Y{
....

   void Method1(){
switch(ip)

  ....
       z.Method2();

....
}

 }

class Z{
....

    void Method2(){
switch(ip)

        Migration.sys_migrate();
  ....

 }
}

  ....

Migration Snapshot

Resumption

Fig. 7. Example of Resuming the Execution after Migration

before every invocation to a critical method. For instance,
ip[1] is incremented before an invocation toMethod2, but
not before an invocation toMethod3 which is not a critical
method. This example also shows how theresumption flag
is used. If the flag is set tofalse, the execution of the methods
starts from the beginning. Otherwise, it starts with the code
region pointed to byip[1]. As soon as the SM recreates the
stack, theresumption flag is reset by the SM itself. This
ensures that any future invocation toMethod1 or any other
critical method will not be affected by the value ofip. Note
that resumption flag is local to an SM, but global to all the
classes that constitute that SM.

SupposeMethod1 had calledsys migrate before migra-
tion, the value ofip[1] would be 3. When the SM resumes
execution at the destination node and entersMethod1, the
instruction pointer would be redirected tolabel 3 by virtue of
the switch statement; from this point on,normal execution
of the SM begins. If on the other handMethod4 had called
sys migrate, then the value ofip[1] would be 2. When the
SM entersMethod1 after resuming at the destination node,
the instruction pointer would be redirected tolabel 2 which
contains a call toMethod4, thereby skipping the already
executed code inMethod1 and recreating the runtime stack.

Fig. 7 briefly demonstrates the working of our instrumen-
tation scheme. The upper part of the figure gives a pictorial
view of ip in three critical methods at the time of migration.
The arrows in the lower part of the figure show the control
flow of the SM from the time of execution resumption at the
destination until the method stack is recreated.

2) Bytecode Instrumentation for Suspending a Smart Mes-
sage: In the original SM implementation, SMs were VM-
level threads controlled internally by the VM. In the current
implementation, SMs are Java threads, and therefore, the
control over SMs is theoretically limited to the amount of
control offered by the Java Thread API. When an SM migrates
or blocks on a tag, the corresponding Java thread has to be
stopped. Thestop() method of the JavaThread class has
been deprecated as it was deadlock-prone. In the absence of
a direct way of stopping a Java thread, we have used the Java



exception mechanism and bytecode transformations.
For eachsys migrate or blockSM call, aStopException

(a class that extends the RuntimeException) is thrown. To
ensure that this exception is not caught until it reaches the
bottom of the stack, everytry-catch block is instrumented
to re-throw theStopException if it happens to catch it.
We ensure that therun() method has a try-catch block that
catches this exception and consequently finishes the thread’s
execution. Using a RuntimeException instead of a regular
Exception has the advantage that the method signatures do
not have to be modified to include athrowsclause.

B. Tag Space

As mentioned in Section II, the tag space contains two types
of tags: application tags and I/O tags. Since the implementa-
tion of I/O tags is platform dependent, the portable runtime
system implements only application tags. These tags are Java
objects which can be created, deleted, read from, or written
into by SMs.

An SM can also block on a tag for a certain period of
time. To implement a timeout mechanism, we use Java’s
built-in scheduler (i.e., provided by theScheduler class),
which makes the SM ready for scheduling after the timeout.
Using Java’sScheduler class avoids a polling timer thread
that would otherwise be required to implement the timeout
mechanism. Commonly, a blocked SM is woken up by the
interpreter when the tag is written by another SM. Each time
an SM blocks on a tag, its corresponding Java thread is
terminated through the thread stopping mechanism described
in III-A.2. Each time an SM is unblocked (and consequently
dispatched for execution), a new Java thread is created for it.

C. Code Cache

We exploit Java’s classloader to implement the code cache.
The Java reflection mechanism is used to load a class repre-
senting a code brick. In the process, a newClass instance
of the corresponding class is created. The classloader will not
unload the class as long as there is a live reference to the
Class instance. References to the cached classes are stored
such that these classes are not unloaded by the classloader.
When the caching policy chooses a class for eviction, we just
remove the stored reference for that class.

D. Scheduler

The SM scheduler2 is implemented as a Java thread that
extracts an SM from the ready queue in FIFO order, dispatches
it for execution as a Java thread, and goes to sleep. When the
SM completes its execution, it wakes up the scheduler using
the Java’s thread synchronization mechanism.

E. Limitations

As in the traditional SM architecture, the portable SM
architecture does not allow the use of local variables across
migrations (they can be used locally, though). Consequently, a
local variable cannot occur in two different code regions. All
the variables that need to be used across migrations have to be
declared as global variables (i.e., they become part of the data

2Note that the SM scheduler is a component of the SM architecture and is
different from Java’s built-in scheduler mentioned in III-B.

TABLE II

INCREASE INBYTECODE SIZE DUE TO INSTRUMENTATION

Unmodified
Bytecode(KB)

Modified
Bytecode(KB)

2330 2395
1084 1122
1230 1266
1527 1564

bricks). If the programmer wants to use a local variable in two
or more code regions, the local variable should be declared and
initialized before the beginning of the first code region of that
method. This is necessary to satisfy the bytecode verifier.

The lightweight instrumentation scheme does not support
recursion across migrations; recursion, however, can be used
locally. Our instrumentation scheme relies on the assumption
that only one instance of a method is present inside the runtime
stack at the time of migration. It should be noted, however,
that lack of local variables or recursion across migrations does
not compromise the programming model at all.

I/O tags imply coupling the SM runtime system with the
OS. In order to make SMs portable, we had to eliminate these
tags. The result is a loss of power in the new model, but it
can be compensated by various profiles and JSRs provided by
J2ME [3] for interacting with the OS or the network. These
profiles/JSRs provide Java API for interacting with the OS or
the network, thereby hiding the underlying implementation.
For instance, the MIDP profile [10] hides the network proto-
cols from the user, provides a generic method of connecting
with other devices, and is able to store data persistently without
referring to the file system. Another example is the Bluetooth
API (JSR 82) which allows connectivity through Bluetooth.

The security issues related to the SM architecture are
presented in [6]. Our current implementation does not address
these issues. We are in the process of converging upon the cor-
rect approach for dealing with the security issues that come as
a byproduct of designing a middleware for mobile agents and
mobile ad-hoc networks. For cell-phones, which have GPRS
connectivity in addition to short-range wireless connectivity,
the code could be downloaded from a trusted server and stored
in the code cache either statically or dynamically. This adds
a level of security because it avoids fetching code from an
untrusted peer.

IV. EVALUATION

Our goals in conducting the experimental evaluation for
the portable SMs were three-fold: (1) quantify the impact
of bytecode instrumentation on the SM size, (2) compare
the costs for the basic SM operations between our portable
architecture and the original SM architecture, and (3) execute a
simple application over both architectures in order to compare
the completion time.

We use Soot1.2.5 [11] to do the off-line bytecode instrumen-
tation. Table II shows the increase in the bytecode size as a
result of instrumenting four of our SM test cases. On average,
we observe an increase of 2.9% in the bytecode size which
is negligible compared to existing approaches (see Section V
for details).



TABLE III

EFFECT OFCODE BRICK SIZE ON SINGLE-HOP ROUND-TRIP TIME

Round Trip Time(ms)
Portable SM Architecture Original SM ArchitectureSize(Bytes)
Uncached Cached Uncached Cached

1430 114 124 50 23
2322 126 124 56 23
3456 150 124 63 23
4454 155 124 69 23
8510 165 124 91 23

TABLE IV

EFFECT OFDATA BRICK SIZE ON SINGLE-HOP ROUND-TRIP TIME

Round Trip Time(ms)Size(Bytes)
Portable SM Architecture Original SM Architecture

2088 177 29
4056 196 38
8010 234 57
16010 301 88

We have tested the portable SMs on J2ME CDC platform
which uses CVM as the virtual machine. CDC’s Personal
Profile is the upcoming replacement for Personal Java which
is currently used in cell-phones. We have used the reference
implementation of CDC’s Foundation Profile which is upward
compatible with both Personal Profile and Personal Java.
Foundation Profile is widely used on PDAs. Our testbed
consists of HP iPAQs running Linux. Each iPAQ contains
a StrongARM 206MHz processor, 32MB flash memory, and
64MB RAM. For communication we use 802.11b PC cards.

Tables III and IV compare the cost of migration between
the portable SM architecture and the original architecture.
Table III shows the variation of the single-hop round-trip time
for an SM as a function of the code brick size (the data
brick size is negligible in this experiment). Table IV shows
the variation of the single-hop round-trip time of an SM as
the size of data bricks varies from 2KB to 16KB (the code
brick size constant at 3.51KB). Table V shows the cost of tag
space operations.

These results show an increase in the execution time for
portable SMs compared to SMs executed over the original
architecture. However, this is the price paid for the ability to
inject a new distributed application anytime, anywhere on a
Java-enabled device without modifying the system software.
Note that these results have been obtained using the reference
implementation of CDC’s Foundation Profile which is much
slower than the commercial version which has been optimized
for different platforms. We believe that significantly better
results could be obtained by using the commercial version.

We have implemented and evaluated theStudent Study
Group application described in Section II. Table VI shows
the time taken to findN students for a group study and return
to the initiator. We have executed this application over an ad
hoc network consisting of 8 HP iPAQs, while varyingN from
1 to 5 (the nodes of interest have been distributed uniformly in
the network). The results indicate that our architecture yields a
completion time greater by as much as 3.7 times. The absolute
numbers, however, demonstrate that the SM over the portable
architecture can still complete between 4.09s and 6.33s when

TABLE V

COST OFTAG SPACE OPERATIONS

Time(µs)Operation
Portable SM Architecture Original SM Architecture

readTag 78 21
createTag 89 43
writeTag 71 32
deleteTag 98 56

TABLE VI

COMPLETION TIME FOR THE Student Group StudyAPPLICATION, VARYING

THE NUMBER OF STUDENTS, N, FROM 1 TO 5

Completion Time(ms)
Portable SM Architecture Original SM ArchitectureN
Uncached Cached Uncached Cached

1 4527 4093 1284 1102
2 5212 5031 1944 1783
3 5604 5308 2036 1968
4 6358 6012 2157 1985
5 7863 6339 2198 2148

the code is cached. We consider this time reasonable for
mobile ad hoc networks composed of resource constrained
devices. The effect of code cache is not very significant for this
application because of the unavoidable contention encountered
in wireless networks, coupled with our on-demand content-
based routing which involves many broadcast messages in the
network.

To summarize our results, we have found out that our
implementation performs approximately 2 to 3.7 times slower
than the original implementation. We believe that the main
reason is the fact that we use an un-optimized virtual machine
(Java CVM based on x86/PC Linux development), while the
original implementation uses a virtual machine (Java KVM)
designed specifically for resource constrained devices. To
quantify the impact of the VM, we plan to run our prototype
on the optimized, commercially available CVM. Such an
experiment will help us evaluate more accurately the cost of
portability (i.e., the cost of implementing the SM architecture
as a runtime system on top of unmodified Java VM versus the
cost of implementing it within the VM).

V. RELATED WORK

Smart Messages (SMs) share the idea of code migration
with mobile agents [12], [13], and active networks [14], [15].

Similar to a mobile agent, an SM may be viewed as a task
that explicitly migrates from node to node and executes on
nodes of interest. Unlike mobile agents, SMs are defined to
be responsible for their own routing in a network. This feature
allows SMs to adapt quickly to changes that may occur both in
the network topology and the availability of resources at nodes.
A mobile agent names nodes by fixed addresses and commonly
knows the network configuration a priori, while an SM names
nodes by content and discovers the network configuration
dynamically. Furthermore, the SM system architecture defines
a node architecture suitable for resource constrained devices.

SMs differ from active networks (AN) in several key
features. A first difference comes from the problems they



try to solve: AN target improved performance for end-to-
end data transfers in relatively stable networks, while SMs
help the development of distributed applications on top of a
new computing infrastructure which is significantly under-used
due to the lack of programmability support. Unlike AN, we
define a computing model whereby several SMs can cooperate,
exchange data, and synchronize with each other through the
tag space. In terms of migration, AN do not transfer the
execution state from node to node whereas the SM model
does.

To implement execution migration (i.e., transfer of the
execution state), two approaches can be used: VM-based or
compiler-based. The first approach implies designing new
VMs or modifying existing ones to support the capturing
and restoring of the execution state. The second approach
works for unmodified VMs, but it involves either a modified
compiler, or other tools that insert new pieces of code in the
source code or directly in the executable program in order to
capture and restore the execution state. In the following, we
discuss several systems that transfer the execution state for
Java programs.

Similar to the original SM implementation, a number of
systems [16]–[18] have modified the Java VM (JVM) to
provide the required state capturing and restoring. Unlike SMs
which were designed specifically for networks of resource
constrained devices, these systems are too heavy for devices
such as cell-phones or PDAs.

Funfrocken [9] implements transparent migration using a
source code transformation mechanism (pre-processor). Cap-
turing the method stacks is done within exception handlers.
When a program needs to migrate, an exception is thrown,
and in every method, an exception handler is instrumented to
save the state of the method stack by creating a newstate
object for it. The major difference between our approach
and this system is in terms of amount of data sent through
the network. Using source code transformation, this system
increases the size of the bytecode with with as much as 470%.
Our bytecode instrumenter increases the size of the bytecode
only with as much as 3%. Additionally, this system transfers
a significant amount of meta-data for thestate objects. Other
disadvantages of this system compared to ours include changes
of the signatures for all methods to accept astate object as a
parameter, and the need for recompilation of all classes (i.e.,
the complete source code should be available).

Sakamoto et al [7] implement migration using a bytecode
transformation scheme that does bytecode verification. Their
approach is similar to Funfrocken’s in the sense that they also
create astate object for every method frame on the stack by
using the exception handling mechanism, and therefore, incur
comparable growth in the code size. Truyen et al [8] have
an implementation that also does bytecode transformation by
using the bytecode verification mechanism. Unlike the two
previously mentioned approaches, they usereturn and if
instructions to roll back the stack when they are creatingstate
objects for every method on the stack which leads to more
degradation in performance. Additionally, in order to target
multi-threaded environments, they define their own thread-
framework: Taskshave to be used instead of threads, and a

separate scheduler has been implemented. Although expensive,
this approach works well for multi-threaded environments.

The main difference between our approach and the above
mentioned bytecode transformation approaches is that we
manage to capture and restore execution state without iterating
through the runtime stack and creatingstate objects for every
method instance on the stack. By assuming no use of recursion
and local variables across migrations, we have been able to
devise a lightweight migration approach suitable for embedded
systems, without compromising the programming model.

VI. CONCLUSIONS

The contribution of this paper is two-fold. First, we have
presented a portable middleware architecture for ubiquitous
Java-enabled devices which opens up many possibilities for
user-defined distributed applications over ad hoc networks
composed of cell-phones or PDAs. Second, we have presented
a lightweight execution migration mechanism. The experi-
ments conducted over a mobile ad hoc network demonstrate
the feasibility of our approach.
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