Context-aware Migratory Services in Ad Hoc Networks*

Rutgers-Helsinki Ph.D. Student Workshop on Spontaneous Networking
8-12th May 2006

Oriana Riva
University of Helsinki, Dep. of Computer Science
oriana.riva@cs.helsinki.fi

*Joint work with Liviu Iftode (Rutgers), Cristian Borcea (NJIT) and Tamer Nadeem (Univ. of Maryland)

Connecting to Internet through ad hoc networks

How else can we exploit the ad hoc network characteristics to support a new class of applications?
Ad hoc networks as service providers

- Enable a new class of services specific to ubiquitous computing environments
- Acquire, process, disseminate real-time information
- Targets: region, activity, entity

Traffic Information from region at constant distance in front of the driver

- Requirements:
 - Service must be aware of its context
 - Service must adapt to user’s context
Entity Tracking Service

Requirements:
• Service must be aware of its target
• Service must preserve its execution state over time

Spontaneous Monitoring Service

Requirements
• Transfer code from node to node
• The service must be aware of its context
Requirements for services in ad hoc networks

- Context-awareness
 - dynamism of services and request targets

- User-driven adaptability
 - dynamism of user needs and operational context

- Service continuity
 - due to context changes, a node may become incapable of hosting a service any longer
 - need to support stateful interaction

- On-demand code distribution
 - nodes do not possess the code for any type of service

Outline

- Motivations
- Context-aware Migratory Services
- Migratory Services Framework
- Evaluation
- Conclusions & Future Works
Migratory Services Model

- MS migration
- Physical client-service interaction
- Virtual client-service interaction

One-to-one mapping between clients and migratory services

Migratory Services Model - cont’d

Client end-point

MS State

Meta-service

MS State

Migratory service

MS State

Migratory service end-point

MS State

Migratory service end-point

One-to-one mapping between clients and migratory services
Example: Region monitoring Service

Key ideas in Migratory Services

- Capable of migrating to different nodes in the network in order to effectively accomplish their function
- 3 basic mechanisms:
 - Monitor the context of interacting entities
 - Specify in context rules how the service execution is context-dependent
 - Migrate the service from node to node and resume its execution once migrated
- Service migration is triggered by context changes
- Service migration is transparent to the client
Outline

- Motivations
- Context-aware Migratory Services
- Migratory Services Framework
- Evaluation
- Conclusions & Future Works

Migratory Services Framework

- Client Application/Service
 - Context Manager
 - Monitored Cxt
 - Communication Manager
 - Reliability Manager
- InCtxRules
- OutCtxRules
 - Validator

Smart Messages Platform

Operating System/ Wireless Communication / Sensors
Migratory Service Implementation using Smart Messages

Smart Messages
- implemented on a modified version of Sun’s Java K Virtual Machine

Migratory Services
- clients, migratory services, and meta-services are Java programs that register with the framework
- the framework maps these programs onto lower-level SMs
- SM self-routes using geographical and content-based routing

Context Manager
- Context data provided by the SM platform
 - location, time, speed using GPS
 - device status information
 - neighbors list
- MonitoredCtx identifiers are translated into SM I/O tags
- Access to context data by polling or blocking on corresponding SM tags
Context Rules and Validator

- Evaluate if a service computation can be “correctly” carried out on the current hosting node
- If not, trigger migration

CxtRules are service/client-specific policies
- inCxtRules – control on incoming data
- outCxtRules – control on outgoing data

CxtRules are condition/action statements
- Conditions are full binary trees of Boolean expressions (comparisonNodes + combinationNodes)
 - Ex: < OR, <batteryLevel, EQUAL, low>, <responseLocation, OUT_REGION, userRegion> >
- Actions: migrate service, send update, accept/refuse response, ...

Communication Manager

- Tasks:
 - Discover meta-services
 - Route messages between communicating end-points
 - Carry out service migration

- Use naming conventions defined by SM

- Two basic SM routing algorithms:
 - geographical routing (similar to GPSR)
 - region-bound content-based routing (similar to AODV)
Reliability Manager

- Fault-tolerance to one failure
- Inactive version of the service on a secondary node
- In case of failure of the primary version, the secondary version can take over the service provisioning

Outline

- Motivations
- Context-aware Migratory Services
- Migratory Services Framework
- Evaluation
- Conclusions & Future Works
Prototype Migratory Service: TJam

- Predict traffic jams in real-time
- Traffic jams are locally congested phases in which cars travel at slow or zero velocity
- TJam utilizes two types of information that every car owns:
 - number of one-hop neighboring cars
 - speed of one-hop neighboring cars

\[P_{\text{number}} = \max P_{\text{number}} \times \frac{\text{avg speed} - \text{min speed}}{\max \text{num} - \text{min num}} \]
\[P_{\text{speed}} = \max P_{\text{speed}} \times \frac{\text{avg speed} - \text{max speed}}{\min \text{speed} - \max \text{speed}} \]
\[P'_{\text{tjam}} = \alpha \times P_{\text{number}} + (1 - \alpha) \times P_{\text{speed}} \]
\[P_{\text{tjam}} = P'_{\text{tjam}} \times \frac{N_{\text{tjam}}}{N_{\text{total}}} \]

TJam: Testbed Experiments

- Ad hoc mobile network of 11 HP iPAQs with 802.11 cards and GPS
- Use mobility traces
- 1-2 hops communication
- 2/3 neighbors
TJam constantly executes in the user-specified region

TJam: Simulations

- ns-2 simulator with the CMU-wireless extensions
- microscopic traffic generator tool Micro-VTG
- Goal: Investigate the scalability of migratory services in large scale networks
- Study based on the comparison of
 - TJam-Smart: migratory service model implementation
 - TJam-Base: baseline centralized approach
- Metrics
 - inter-response time
 - correct response generation time
 - packet utilization rate
 - response packets overhead
Simulations: effects of number of clients

- highway of length 25km with 3 lanes
- vehicles avg speed is 30m/s with a gap of 150m
- 800 vehicles (500 vehicles active and 50 service nodes)

Simulations: effects of vehicles speed

- 150 clients
Outline

Motivations
Context-aware Migratory Services
Migratory Services Framework
Evaluation
Conclusions & Future Works

Conclusions

Migratory Services enables a new class of services in ad hoc networks

- services quickly adapt to changes in the physical environment, in the node capabilities, and network topology
- service continuity to the client

Experimental results demonstrate the feasibility of our approach
Simulation results demonstrate the scalability and efficiency of migratory services compared to a traditional centralized approach
Future Works

- Extend migratory services to smart phones using Portable Smart Messages (J2ME CDC)
- Experimental testbed of nokia 9500
- Use migratory services to collect context information of entities and environments
 - Integration with the Contory middleware
 - Contory is a middleware for the provisioning of context information on smart phones

Thank you!

orianariva@cs.helsinki.fi